1-4车辆模型的机械装置_第1页
1-4车辆模型的机械装置_第2页
1-4车辆模型的机械装置_第3页
1-4车辆模型的机械装置_第4页
1-4车辆模型的机械装置_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

摘要本论文主要设计一个1/4车辆悬架模型机械装置,体积小巧,拆装方便,结构简单,以便于采集信号,更好地作半主动悬架试验。乘坐舒适性和行驶平顺性是现代轿车的两项基本性能特点,振动是影响乘坐舒适性的主要因素。悬架是汽车中实现操作稳定性和行驶平稳性的基本机械结构,主要由弹簧和减振器组成,其功能是缓和路面不平引起的冲击和振动以改善平顺性。1/4车辆悬架模型的机械装置集激励、振动于一体,用位移传感器和加速度传感器采集信号,通过计算机处理,由磁流变减振器执行控制阻尼。进行了各个轴、板力的较核,以及弹簧的设计,选取了位移传感器、加速度传感器和磁流变减振器的型号。最后画了立体图,装配图和主要零件图。关键词半主动悬架1/4车辆模型磁流变减振器ABSTRACTTHISTHESISMAINLYDESIGNSONE1/4VEHICLESUSPENSIONMODELMECHANISM,WHICHTHEBULKISDELICATE,THEDISMANTLINGANDINSTALLINGISEASY,THECONFIGURATIONISSIMPLE,SOTHATITCANCOLLECTSIGNALMOREEASILYANDDOTHESEMIACTIVESUSPENSIONEXPERIMENTBETTERTHEREARETWOBASICCHARACTERSCOMFORTSANDSMOOTH,THELIBRATIONISTHEMAINCAUSEOFEFFECTINGTOTHECOMFORTSTHESUSPENSIONISTHEBASICMECHANISMTOREALIZETHEOPERATIONSTABILITYANDSTEERPLACIDITY,WHICHMAINLYCONSISTOFSPRINGANDDAMPERTHEFUNCTIONISTOIMPROVETHESMOOTHTHROUGHREDUCINGTHECONCUSSIONANDLIBRATIONCAUSEDBYGRAVAMENOFTHEROADSURFACE1/4VEHICLESUSPENSIONMODELISTHEMECHANISMWHICHISPROMPTINGANDLIBRATIONROLLEDINTOONEITUSESDISPLACEMENTSENSORANDACCELERATIONSENSORTOCOLLECTSIGNALS,THEN,ECUDEALSWITHTHEM,THEMAGNETORHEOLOGICALDAMPERCONTROLDAMPFURTHERMORE,CHECKTHEAXISANDBOARD,DESIGNTHESPRING,ELECTTHEITEMOFDISPLACEMENTSENSOR,ACCELERATIONSENSORANDMAGNETORHEOLOGICALFLUIDDAMPERATLAST,THEREARESOLIDDRAWINGS,ASSEMBLINGDRAWINGANDTHEMAINPARTSDRAWINGKEYWORDSSEMIACTIVESUSPENSION,1/4VEHICLEMODEL,MAGNETORHEOLOGICALDAMPER目录前言11悬架的概述211悬架的构造212悬架的分类5121全主动悬架5122半主动悬架513半主动悬架系统的研究进展6131新型的半主动悬架系统6132有级可调减振器6133无级可调减振器7134减振器驱动方式8135半主动悬架控制策略814今后研究和开发工作展望915磁流变减振器的工作原理102车辆模型的简化过程1221汽车振动的简化1222主动悬架1423期望中的车辆特性173信号处理的原理2031半主动悬架的控制系统模型2032信号采集过程的基本原理204设计的机械装置2141基于本次设计的有关参数2142振动台、减振器等标准件的选取2443连接轴(杆)的设计2544弹簧的设计2845立柱、固减件和第二、三连接板的设计2946导轨的设计3147减振器和弹簧的安装3148悬上质量和悬下质量的较核325结论34致谢35参考文献36附录1前言汽车半主动悬架控制系统的研究工作开始于1974年美国加州大学戴维司分校的研究工作,并在20世纪80年代初开始大规模生产应用。半主动悬架折中了被动悬架和全主动悬架的优缺点。半主动悬架可以根据汽车运行时的振动及工况变化情况对悬架阻尼参数进行自动调整。半主动悬架控制律相对简单、能耗小,技术上易于实现,且能达到与主动悬架类似的优良品质,因而半主动悬架的应用前景相当广阔。因此今后的目标是研究和开发适合我国国情的控制有效、能耗低、造价合理的半主动悬架振动控制这也比较系统。模拟悬架系统机械装置设计是2004年南京林业大学科技创新基金项目车辆半主动悬架智能控制器研究的一个子项目,整个装置用PROE建模,然后转化为装配图。21悬架的概述11悬架的构造悬架是车架与车桥之间的一切传力连接装置的总成,它的功用是把路面作用于车轮上的垂直反力(支撑力),纵向反力(牵引力和制动力)和侧向反力以及这些反力所造成的力矩传递到车架(或承载式车身)上,以保证汽车的正常行驶。现代汽车的悬架尽管有各种不同的结构形式,但一般都有弹性元件、减振器和导向机构三部分组成。弹性元件使车架(或车身)与车桥(或车轮)之间做弹性联系,但弹性系统受到冲击后,将产生振动。持续的振动容易是乘员感到不舒服和疲劳,故悬架还应当具有减振作用,使振动迅速衰减,为此,在许多结构型式的汽车悬架中都设有专门的减振器。车轮和车架和车身跳动时,车轮(特别是转向轮)的运动轨迹应符合一定的要求,否则,汽车的某些性能(特别是操纵稳定型)有不利的影响。因此,悬架中某些传力机构同时还承担着使车轮按一定的轨迹相对于车架和车身跳动的任务,因此这些传力机构还起导向作用,故称导向机构。由此看这三者分别起着缓冲,减振和导向的作用。在多数的轿车和客车上,为防止车身在转向等情况下发生过大的横向倾斜,在悬架中还设有辅助弹性元件横向稳定器。1弹性元件;2纵向推力杆;3减振器;4横向稳定器;5横向推力杆图11汽车悬架结构示意图并非所有的悬架都设置上述这些单独的装置不可。例如常见的钢板弹簧,除了作为弹性元件起缓冲作用而外,当它在汽车上纵向安置,并且一端与车架作固定铰接连接3时,既可负担起传递所有各向力和力矩,以及决定车轮运动轨迹的任务,因而就没有必要在另行设置导向机构。此外,一般钢板弹簧是多片叠成的,它本身即具有一定的减振能力,因而在对减振的要求不高时,在采用钢板弹簧作为弹性元件的悬架中,也可以不装减振器。由悬架的刚度和悬架弹簧支撑的质量(弹簧质量)所决定的车身自然振动频率(或称振动系统的固有频率)是影响汽车的行驶平顺性的悬架重要性能指标之一,人体所习惯的频率是步行身体上下运动的频率,约为116HZ。车身自然振动频率应当尽可能地处于或接近这一频率范围,根据力学分析,如果将汽车看成一个在弹性悬架上作单自由度振动的质量,则悬架系统的自然振动频率(固有频率)为12KGNMF其中,G重力加速度;F悬架垂直变形(挠度);M悬架簧载质量;KMG/F悬架刚度(不一定等于弹性元件的刚度)指使车轮中心相对车架和车身向上移动的单位距离(即使悬架产生单位垂直压缩变形)所需加于悬架上的垂直载荷。由上式可见(1)在悬架所受垂直载荷一定时,悬架刚度愈小,则汽车自然振动频率愈低。但悬架刚度愈小,在一定载荷下悬架垂直变形就愈大,这对于簧载质量大的货车,在结构上难以保证。故实际上货车的车身自然振动频率往往偏高,而大大超过上述理想的频率范围。(2)当悬架刚度一定时,簧载质量愈大,则悬架垂直变形愈大,而自然振动频率愈低。故空车行驶时的车身自然振动频率要比满载行驶时的高。簧载质量变化范围愈大,则频率变化范围也愈大。为了使簧载质量从相当于汽车空载到满载的范围内变化时,车身自然振动频率保持不变或变化很小,就需要讲悬架的刚度做成可变的,即空车时悬架刚度小,而载荷增加时,悬架的刚度随之增加。有些弹性元件本身的刚度是可变的,如气体弹簧;有些悬架所用的弹性元件的本身的刚度随是不变的,但如果在悬架中采取了某些措施,可使整个悬架具有可变的刚度,4例如渐变刚度钢板弹簧。悬架可以分为两大类非独立悬架和独立悬架(图12)。非独立悬架的结构特点是两侧的车轮由一根整体式车桥相连,车轮连同车桥一起通过弹性悬架挂在车架或车身的下。独立悬架则是每一侧的车轮单独地通过弹性悬架悬挂在车架或车身的下面。采用独立悬架时,车桥都做成断开的。非独立悬架独立悬架图12非独立悬架与独立悬架示意图为了加速车架和车身振动的衰减,以改善汽车的行驶平顺性,在大多数汽车的悬架系统内部装有减振器。减振器和弹性元件都是并联安装的。汽车悬架系统中广泛采用液力减振器。液力减振器的作用原理是当车驾与车桥做往复相对运动,而活塞在缸筒内往复移动时,减振器壳体内的油液便反复的从一个内腔通过一些窄小的空隙流入另一内腔。此时,孔壁与油液的摩擦及液体分子内摩擦便形成对振动的阻尼力,使车身和车架的振动能量转化为热能,而被油液和减振器壳体所吸收,然后散到空气中。减振器阻尼力的大小随车架和车桥相对运动速度的增减而增减,并且与油的黏度有关。因此要求减振器所用油液的黏度受温度变化的影响尽可能小;且具有抗汽化,抗氧化以及对各种金属和非金属零件不起腐蚀作用等性能。减振器的阻尼力越大,振动消减得越快,但却使并联的弹性元件的作用不能充分发挥,同时,过大的阻尼力还可能导致减振器连接零件及车架损坏。为解决弹性元件和减振器之间的这一矛盾,对减振器提出如下要求(1)在悬架压缩行程(车桥和车架互相移近的行程)内,减振器阻尼力应小,以便充分利用弹性元件的弹性,以缓和冲击。(2)在悬架伸张行程内(车桥与车架相对远离的行程)内,减振器的阻尼力应大,以求迅速减振。(3)当车桥(或车轮)与车架的相对速度过大时,减振器应当能自动加大液流通道面5积,使阻尼力始终保持在一定的限度之内,以避免承受过大的冲击载荷。12悬架的分类传统的悬架系统的刚度和阻尼是按经验或优化设计的方法确定的,根据这些参数设计的悬架结构,在汽车行驶过程中,其性能是不变的,也是无法进行调节的,使汽车行驶平顺性和乘坐舒适性受到一定影响。故称传统的悬架系统为被动悬架系统。如果悬架系统的刚度和阻尼特性能根据汽车的行驶调节(车辆的运动状态和路面状况等)进行动态自适应调节,使悬架系统始终处于最佳减振状态,则称为主动悬架。主动悬架系统按其是否包含动力源可以分为全主动悬架(有源主动悬架)和半主动悬架(无源主动悬架)系统两大类。121全主动悬架全主动悬架是根据汽车的运动状态和路面状态,适时地调节悬架的刚度和阻尼,使其处于最佳减振状态。它是在被动悬架(弹性元件、减振器、导向装置)中附加一个可控作用力的装置。通常由执行机构、测量系统、反馈控制系统和能源系统4部分组成。执行机构的作用是执行控制系统的指令,一般为发生器或转矩发生器(液压缸、气缸、伺服电动机、电磁铁等)。测量系统的作用是测量系统各种状态,为控制系统提供依据,包括各种传感器。控制系统的作用是处理数据和发出各种控制指令,其核心部件是电子计算机。能源系统的作用是为以上各部分提供能量。122半主动悬架半主动悬架不考虑改变悬架的刚度,而只考虑改变悬架的阻尼,因此它无动力源且只由可控的阻尼元件组成。由于半主动悬架结构简单,工作时几乎不消耗车辆动力,而且还能获得与全主动悬架相近的性能,故有较好的应用前景。半主动悬架按阻尼级有可以分成有级式和无级式两种。(1)有级式半主动悬架它是将悬架系统中的阻尼分为两级、三级或更多级,可由驾驶员选择或根据传感器信号自动进行选择悬架所需要的阻尼级。也就是说,可以根据路面条件(好路或坏路)和汽车的行驶状态(转弯或制动)等来调节悬架的阻尼级,使悬架适应外界环境的变化,从而可以较大幅度地提高汽车的行驶平顺性和操纵稳定性。半主动悬架中的三级阻尼可调减振器的旁路控制阀是由调节电动机来带动阀芯转动,使控制阀孔具有关闭,小开和大开3个位置,产生3个阻尼值。该减振器应用于OPELSENTOR和OPELGA轿车上。6(2)无级式半主动悬架它是根据汽车行驶的路面条件和行驶状态,对悬架系统的阻尼在几毫秒内有最小变到最大进行无级调节。无级半主动微处理器从速度、位移、加速度等传感器处接受到信号,计算机出系统相适应的阻尼值,并发出控制指令给步进电动机,经阀杆调节阀门,使其改变节流孔的通道节面积,从而改变系统的阻尼。该系统虽然不必外加能源装置,但所需传感器较多,故成本仍较高。13半主动悬架系统的研究进展现代汽车正朝着安全、智能化和清洁化的方向发展,悬架系统智能化解决了传统被动悬架存在的舒适性和稳定性不能兼顾的问题并能适应变化的行驶工况和任意道路激励,代表了悬架系统发展的方向。主动悬架能获得一个优质的隔振系统实现理想悬架的控制目标,但能量消耗大,成本高,结构复杂,其中能量,成本和可靠性是限制主动悬架发展的瓶颈。半主动悬架通过改变减振器的阻尼特性适应不同的路面和行驶状况的需要,改善乘坐舒适性和操纵稳定性。由于半主动悬架在控制品质上接近于主动悬架且结构简单,无需力源,能耗小,因而是近期最能走向市场被推广应用的新兴技术。131新型的半主动悬架系统前人基于天棚阻尼的概念发明了半主动阻尼器,并应用于生产,但对悬架性能的改善是极其有限的。后来,有人提出了开关控制的半主动悬架,它能产生较大的阻尼力,这种悬架已应用到实车上,其后又有人在半主动悬架控制中引入了此方法,并改进了控制算法的稳定性。日产公司研制了一种声纳式半主动悬架,它可通过声纳装置预测路面信息,悬架减振器有柔和、适中和稳定3种选择状况。随后有研究人员利用了电流变和磁流体作为工作介质,研究了新型的半主动悬架系统。半主动悬架系统除了少量的开启电液阀的能量以外,几乎不需要外加能源,研究表明,只要恰当选择控制逻辑,半主动阻尼器可以达到像主动减振器一样的减振效果。通常,半主动悬架是指悬架弹性元件的刚度和减振器的阻尼系数之一可以根据需要进行调节的悬架。目前,半主动悬架研究主要集中在调节减振器的阻尼系数方面,即将阻尼可调减振器作为执行机构,通过传感器检测到汽车行驶状况和道路条件的变化以及车身的加速度,由ECU根据控制策略发出脉冲控制信号实现对减振器阻尼系数的有级可调和无级可调。132有级可调减振器7有级可调减振器阻尼在三档之间快速切换,切换时间通常为几毫秒,有级可调减振器实际上是在减振器结构中采用较为简单的控制阀使通流面积在最大、中等或最小之间进行有级调节。有级可调减振器通过减振器顶部的电机控制旋转阀的旋转位置使减振器的阻尼在软/中/硬三档之间变化,有级可调减振器的结构及其控制系统相对简单,但在适应汽车行驶工况和道路条件的变化方面有一定的局限性,有级可调减振器的设计关键是发展先进的阀技术,增加阻尼变化的档数缩短切换时间从而使复杂的控制策略应用成为可能,以进一步提高悬架的控制品质。133无级可调减振器无级可调减振器的阻尼调节可采取以下几种方法(1)节流孔径调节通过步进电机驱动减振器的阀杆连续调节减振器的通流面积,来改变阻尼节流阀或其他形式的驱动阀来实现。这类减振器的主要问题是节流阀结构复杂,制造成本高。(2)减振液黏性调节使用黏性连续可控的新型的功能材料电流变或磁流变液体作为减振液,从而实现阻尼无级变化,电流变液体在外加电场作用下,其流变材料性能(如剪切强度,表观黏度等会发生显著的变化,将这种电流装入减振器并在内外筒之间加上电场通过改变电场强度使电流液体的黏度改变,从而改变减振器的阻尼力。由于电流变减振器的阻尼可随电场强度的改变而连续变化,这无疑是一个较好的选择。但电流变液体存在较多问题,其电致屈服强度小,温度工作范围不宽,零电场黏度偏高,悬浮液中固体颗粒与基础液体之间比重相差较大、容易分离,沉降稳定性差,对杂质敏感等难以适应电流变减振器长期稳定工作的需要。要使电流变减振器响应迅速、工作可靠,必须解决以下几个问题设计一个体积小、重量轻,能任意调节的高压电源;为保证电流变液体的正常工作温度必须设计一个散热系统;充装电流变液体时,要保证无污染;性能优良的电流变液体;高压电源的绝缘与封装。电流变减振器在国外已有一些产品问世。如德国的商业电流变液与电流变减振器及美国的相关产品等。磁流变液体是指在外加磁场的作用下,流变材料性能发生急剧变化的流体,将磁流变液体装入磁流变减振器通过控制磁场强度可实现磁流变减振器阻尼的连续、无级可调。磁流变减振器具有电流变减振器同样的特点,响应比电流变减振器要慢,主要是磁流变液体的磁化和退磁需要时间。磁流变减振器通常采用活塞缸结构,磁流变液的通路有8位于活塞上的阻尼孔或单独的旁路构成。在磁流变液的通路上施加磁场,按结构可分为单出杆活塞结构和双出杆活塞结构单出杆活塞缸结构设计的磁流变减振器已用于大型载重汽车司机座椅半主动悬架减振系统。磁流变液体的特点存在的问题是响应时间长、结构比较笨重、流变性能和稳定性还需要改进。目前成功开发的电流变液体与磁流变液体的特性,从材料特性上看它们都能满足汽车工作要求,但在屈服应力、温度范围、塑性黏度和稳定性等性能方面,磁流边液体强于电流变液体,这也是选用磁流变液体作为半主动悬架系统减振器的减振液的主要因素。其最主要的问题是实现电源以及降低减振器内液体紊流产生的噪声十分困难。134减振器驱动方式可控减振器驱动方式有转阀方式、旁路阀方式、压电驱动方式、磁场控制的磁流变方式和永磁直流直线饲服电机驱动方式等。转阀方式是由控制器单元发出的信号经处理驱动步进电机从而驱动转动阀转动,改变减振器阻尼孔的大小,产生符合系统要求变化的阻尼力。旁路阀方式是由电磁阀根据控制器单元发出的信号开关打开磁阀相当于在油路中增加一个节流孔,从而改变总的阻尼孔的面积,产生符合系统要求的有级变化的阻尼力。压电驱动方式是在减振器的活塞杆内,安装压电执行器和压电传感器。压电执行器由88个压电元件叠加而成,在直流电压作用下压电元件会伸长,该位移经位移放大室放大到可以打开转换阀,形成分流油路,从而获得小阻尼。利用压电传感器可将前轮减振器检测到的路面情况传给电控单元,控制后轮减振器的阻尼。磁场控制的磁流变方式是利用电控单元发出的电压或电流信号控制磁流变减振器内变压线圈产生高压实现对阻尼的连续无级调节。永磁直流直线饲服电机驱动方式则是由直线饲服电机直接实现直线运动控制。电机驱动效率高、响应迅速、灵敏度高、随机性好、控制稳定。目前,永磁直流直线伺服电机在航天飞行器中应用广泛应用,其驱动性能优于液压执行机构。135半主动悬架控制策略最早提出的半主动悬架控制方法是天棚阻尼控制方法,由于其控制算法简单,得到了广泛的应用。但天棚阻尼控制只能解决了悬架系统的舒适性而没有很好解决操纵稳定性问题。因此,目前研究的重点是改进型的天棚阻尼控制方法在半主动悬架系统中的应用。9以经典控制理论为基础的控制不需要了解被控对象的数学模型,只要根据经验进行调节器参数在线调整,即可取得满意的结果,不足的是对被控对象参数变化比较敏感,研究查表法参数控制PID和模糊控制方法在半主动悬架控制系统中应用有一定的实际的意义。线性最优控制方法在系统建模时忽略了高阶动态环节,如车架轮胎的高阶模态以及减振器,传感器的动态特性等所得到的控制参数是根据确定的系统参数计算出来的,仅对理想的数学模型保证预期的性能。当系统参数变化到一定程度时,会使系统变得不稳定,控制参数不再使性能指标最优,有时甚至会使悬架性能恶化。而实际的悬架系统是含有许多不确定因素的非线性、时变、高阶动力系统,难以用定常反馈系统达到预定的性能要求。所以最优控制方法在半主动悬架控制系统中应用很少。自适应控制方法应用于汽车悬架控制系统有自校正控制和模型参考自适应控制两类控制策略。自校正控制是一种将受控对象参数在线识别与控制器参数整定想结合的控制方法,模型参考自适应控制是在外界激励条件和车辆自身参数状态发生变化时被控车辆的振动输出仍能跟踪所选定的理想参考模型。采用自适应控制的车辆悬架阻尼减振系统改善车辆的行驶特性,在德国大众汽车公司的底盘上得到了应用。模糊控制方法在半主动悬架系统中的应用效果比常规控制方法有效,但模糊控制器的稳定性只通过一些模拟过程测试,判断其稳定性的标准还不存在;控制器只使用于一定的汽车参数;改变轮胎性能会使控制结果明显变坏;路面性质对控制效果影响较大。因此,模糊控制方法在半主动悬架控制中应用从理论上无法判定,只能通过系统实测才能确定。神经网络是一个由大量处理单元所组成的高度并行的非线性动力系统,其特点是可学习性和并行性,故在汽车悬架振动控制中有广泛的应用前景,但神经网络不适于表达基于规则的知识,需要较长的训练时间,因此神经网络须与其他控制方法相结合构成复合控制模式,才能具有更大的实际应用。总之,半主动悬架控制方法较多,各种方法均有利弊,综合应用各种方法开发系统控制器是发展方向,从文献分析看日本、德国、韩国等汽车发达国家基本都是采用基于天棚阻尼控制理论,模糊控制理论和自适应控制理论为主线的复合控制策略。任何控制系统总存在不可避免的时滞,它会导致反馈控制系统预料外的失稳,出现安全极为不利的轮跳。因此在汽车半主动悬架振动控制系统开发过程中,应该结合实际车型研究和开发控制有效、实用简单、造价合理的控制器,并经过大量的实车测试才能10推广应用。14今后研究和开发工作展望随着相关学科和高新技术的迅猛发展特别是高效处理器的普及,使得研究实用的半主动悬架振动控制系统成为现实。因此,今后的研究和开发方向是基于磁流液体功能材料,开发控制有效、能耗低、造价合理的汽车悬架振动控制系统,并针对车型开发其适用系统,为此,必须解决一些基础性的理论研究问题和实际应用的技术问题。开发实用的磁流变液可控减振器,研究各种结构参数对性能的影响规律,优化结构并改善其制造工艺性。在现有的磁流变液体中选择或改进并验证最佳配方,为此,需要进行一系列减振器疲劳寿命实验和实车运行实验以验证在实际使用条件下磁流变液体的稳定性、可靠性和实用性。重点研究车轮跳动和悬架行程位置传感器,而汽车惯性传感器、方向盘转角和车速传感器选用目前已有的传感器。车轮跳动和悬架行程位置传感器采用与可调减振器融为一体的结构方式,以实现高度集成和高可靠性。智能控制器集成信号变换、CPU、驱动电路为一体,并同时兼顾汽车其它电子控制系统的功能,为此,必须进行大量的理论和实验研究,要实现最佳的控制目标,控制策略的制定和控制规律、控制软件的实现是关键。为减少反复实验次数,可以采用刚体动力学仿真软件针对半主动悬架的实际使用汽车产品,建立完整的动力学模型,然后模拟汽车行驶的各种工况,选择多种不同的控制策略和控制规律,观察汽车行驶平顺性和稳定性,重点研究控制元器件的响应特性、执行系统的非线性、不确定性和随机性等实际因素的影响,智能控制策略的稳定性,从而制定最佳的控制策略和控制规律,最终再结合实车试验验证。针对特定的汽车产品,选择不同行驶工况进行各种实车实验,以验证半主动悬架的减振效果,验证半主动悬架系统工作的稳定性、可靠性和适应性,并在此基础上进行各个部分改善和改良,最终研制成功基于半主动悬架的新样车。15磁流变减振器的工作原理目前,电流变已经走向一定的成熟阶段,但磁流变还在进一步发展,其研究的深度还会加大。磁流变液是将微米尺寸的磁激化颗粒分散溶于绝缘载液中形成的特定非胶性悬浮液体,因而其流变特性随外加磁场而变化,在无磁场作用时磁流变为牛顿流体,当受到强磁场时,其悬浮颗粒被感应极化,彼此间相互作用形成粒子链,并在极短的时间相互作用,由流体变为具有一定剪切屈服应力的粘塑体,随着磁场的加强,其剪切屈服应力也会响应增大,这就是磁流变效应。经大量的实验研究表明,磁流变液在磁场的作用下的剪应力与剪切速度有一定的关系。磁流变减振器的工作原理磁流变的工作模式11主要有以下3种流动模式、剪切模式和挤压模式,如下图13图13磁流变减振器的3种工作模式(依次为流动、剪切、挤压模式)流动模式是在两固定不动的极板间充满磁流变液体,而剪切模式是在两相对运动的极板之间充满磁流变液体,二者都是外加磁场经过极板垂直作用于两极板之间的磁流变液体,使磁流变体的流动性能发生变化,达到外加磁场控制阻尼力的目的。在上下两极板之间充满磁流变体,上极板为活动板,下极板为固定板,外加磁场经过极板垂直作用于两极板之间的磁流变体,当上极板沿磁场方向向下移动时,磁流变体向四周流动,控制外加磁场即可控制极板所受的阻尼力。挤压模式减振器具有小位移大阻尼的特点,主要用于精密仪器的减振。汽车磁流变减振器一般是基于流动模式或是基于流动模式和剪切模式的混合模式而设计的。图14显示剪切阀式磁流变减振器的工作原理,当活塞与缸体发生相对运动时,则会挤油压缸中的磁流变液,使其通过位于活塞的与缸体的间隙流向另一侧;当间隙加上由线圈所产生的磁场后,则其中的磁流变液固化,变为粘塑性体,使活塞与缸体相对运动的阻尼力增大,通过调节线圈的电流大小调节磁场的强度,从而可以调节减振器的阻尼力的大小。图14剪切阀式磁流变减振器基于剪切阀式磁流变减振器的阻尼力计算公式可表示为YUULSGAFTVPDH式中,G是流体的动力黏度;是磁流变液的屈服剪应力;为活塞正面受到压力YUA的有效面积;V为活塞与缸体的相对速度;L为活塞的长度;D为缸体的内径;H为活塞12与缸体间的间隙。式中的第一项为粘性阻尼力,它不依赖于所加磁场,仅与流体速度粘度及减振器的几何参数有关;第二项为库仑阻尼力,它是随磁流变也屈服剪切应力随之改变,由此形成阻尼力的改变因此。该部分是磁流变减振器实现可调阻尼控制的关键。2车辆模型的简化过程21汽车振动的简化汽车是一个复杂的振动系统,应根据所分析的问题进行简化。图21为一个把汽车车身质量看作刚体的立体模型。汽车的悬挂质量为,它是由车身、车架及其上的总成所2M构成。该质量绕通过质量的横轴Y的转动惯量为,悬挂质量通过减振器和悬架与车轴、YI车轮相连接。车轮、车轴构成的非悬挂质量为。车轮在经过具有一定弹性和阻尼的轮1胎支撑在不平的路面上。在讨论平顺时,这一立体模型的车身质量主要考虑垂直,俯仰,侧倾3个自由度,4个车轮质量有4个垂直自由度,共7个自由度当汽车对称于其纵轴且左右车辙的不平度函数XIYI,此时车身只有垂直振动Z和俯仰振动,这两个自由度的振动对平顺性的影响很大图22为图21四轮汽车的简化的立体模型图22双轴汽车简化的平面模型汽车简化成4个自由度的平面模型在这个模型中,又因轮胎阻尼较小而阻尼可以忽略不记,同时把质量,转动惯量的车身按动力学等效的条件分解为前轴上、后轴上及质2MYI心C上的3个集中、,。这3个质量由无质量的刚性杆连接,它们的大小由下F2RC述3个条件决定(1)总质量保持不变2FR2CM(2)质心位置保持不变AB0FR13(3)转动惯量的值保持不变YI2MYP2FA2RMB式中为绕横轴Y的回转半径,A,B为车身质量部分的质心至前后轴的距离。由条件YP(1)、(2)和(3)得出3个集中质量分别为2F2M/YPLR2A2CM21YB式中的L为轴距。通常,令/AB,并称其为悬挂质量分配系数。由上面3个式子可以看出当12YP时,联系质量0。根据统计,大部分汽车的0812,即接近于1。在1的情2CM况下,前后轴上方车身部分的集中质量、的垂直方向运动是相互独立的。在12FMR的情况下,当前轮遇到路面不平度而引起振动时,质量运动而质量不运动;反2F2RM之也是这样;因此,在这种特殊情况下,可以分别讨论图22上和前轮轴以及和2F2R后轮轴所够成的两个双质量系统的振动。在远离车轮部分固有频率F1015HZ的较低激励频率范围下,轮胎变形很小,忽略其弹性与车轮质量,得出分析车身垂直振动的单质量系统。分析车身振动的单质量系统模型,它由车身质量和弹簧的刚度K,减振器阻尼力2M系数C的悬架组成。Q是输入的路面不平度系数。车身垂直位移坐标Z的原点取在静力不平度函数。根据牛顿第二定理,得到描述系统运动的微分方程为210MZCQKZ此方程的解是由自由振动齐次方程的特解之和组成。令2NC/,K/,则齐次方程20W220ZNWZ式中的称为系统固有频率,而阻尼对运动的影响取决N和的0YUULSGAFTVPDH0W比值,称为阻尼比N/C/202MK14汽车悬架系统阻尼比的数值通常在025左右,属于小阻尼,此时微分方程的解为ZASINTANTE20WN这个解说明,有阻尼自由振动时,质量以有阻尼固有频率振动,其振幅按RW20N衰减,如图23所示NTE图23衰减振动曲线阻尼比对衰减振动有两方面的影响其一,与有阻尼固有频率有关;即RWR20N021由上式可知,增大,下降当1时,0,此时运动失去振荡特征汽车悬架系统RRW的阻尼比大约为025,比只下降了3左右,在工程上可以近似认为,车R00WR身部分振动的固有频率RAD/S、固有频率为0W0F,02KM0F12KM其二,决定振幅的衰减程度由图35上相邻的振幅与只比称为减幅系数D,其表达式为1A2D121NTTE21E对上式取自然对数IND21N可以由实际测量的衰减振动曲线得到减幅系数D,由下式求出阻尼比15214/LND22半主动悬架车辆简化成两个自由度振动系统,其悬架由弹簧和减振器组成。它的特征参数为悬挂刚度K、阻尼器阻力系数C。在一定的路面输入下可根据设计对平顺性指标和行驶2Z安全性指标的综合要求,把弹簧动扰度指标作为约束条件,进行优化选择。对于/DFGDF悬架,一旦特性参数选定后无法更改,称为被动悬架。它的特点是不能满足使用工况的变化,如汽车空载、满载时,悬挂质量(车身质量)会有较大的变化;另外,车速和2M路况在使用过程中也会有较大差异,路面输入不同对平顺性和行驶安全性要求的侧重点也相应不同。被动悬架的特性参数不能根据系统参数和路面输入的变化来进行控制调整,因此在使用工况变化时,无法满足汽车综合性能的较高要求。近年来,随着电控技术在汽车上广泛应用和随动液压技术的发展,主动和半主动悬架悬架技术得到发展和应用,以适应进一步改善汽车的平顺性和行驶安全性的要求。半主动悬架的核心部分是采用可调阻尼减振器,其控制逻辑有的和主动悬架类似是闭环(一般用液压缸作为主动力发生器,代替悬架的弹簧和减振器,由外部高压液体提供能源,用传感器测量系统运动的状态信号,反馈到电控单元,然后由电控单元发出指令控制力发生器,产生主动控制力作用于振动系统,够成闭环控制)也有根据车速等参数进行开环控制的,它消耗的全部能量只用来驱动控制阀,故能量消耗小。下面对简化的车身的两个自由振动系统主动悬架的控制效果进行介绍(1)运动方程图24为车身与车轮两个自由度主动与半主动悬架模型。其运动方程为2MZU11TQUK以上两个式子中,U为主动控制力,它可根据控制策略选择系统运动状态变量、1Z,、的各种线性控制组合。2Z1216图24(车身与车轮两个自由度主动与半主动模型)作为一个例子,在此的表达式选择如下121223ULZLZ式中,、为根据优化得到的反馈系数。1L23L将U代入运动方程,则可以得到12121230MZLZLZ2123TKQLZ因为主动控制力U是通过装在质量、之间的液压缸产生的,故主动控制力U对,2M2M的作用力始终大小相等、方向相反。1(2)主动悬架系统的传递特性与控制效果根据上述运动方程,可以得出主动控制力U采用各种不同控制策略时系统的传递特性。图25主动悬架与被动悬架系统各环节传递特性(从左到右依次为、2/ZQ21/Z主被动传递特性对比)1/ZQ17图25为式12所示的主动悬架与被动悬架系统各环节传递特性的对比。图中被动悬架系统的参数为24KG,240KG,K9475N/M,85270,C754NS/M;1M2MTK相应车身、车轮部分系统的参数为1HZ,10HZ,025。主动悬架采用式0FTFT(1)(2)进行控制,其中反馈系数的选择为7529N/M,480NS/M,19161L2L3LN/M。此时振动系统的参数调整为08752HZ,97035HZ,06787,0FTF,01688。/31TKT由图25可以看出主动与被主动悬架各环节传递特性可以看出,主动控制主要改善“车身车轮”这一环节在共振和高频区的传递特性,“车轮路面”M21/Z这一环节主动悬架在TF附近高频共振区的共振峰比被动悬架反而高了,这与反1/ZQ馈系数的选取有关。图26为主动与被动悬架、对的幅频特性。2ZDF/FGQ图26(主动与半主动悬架的幅频特性)2/DZFFG、对Q图27为主动控制反馈系数、的变化对3个振动响应量、的1L3L2Z/DFGFD影响,可以看出,3个振动响应量的变化趋势都不相同,要根据控制目标图27主动控制反馈系数对3个振动控制响应量,、的影响1L22Z/DFGDF来优化选择反馈系数。23期望中的车辆特性18关于车辆形式振动方面,已有明确的、且被普遍认可的车辆特性评价指标;而对车辆操纵特性的而言,其中涉及了许多人为的因素,所以其评价指标通常较难确认,不大可能被所有人接受。就乘坐舒适性而言,被广为接受的评价指标是使驾驶员和乘员所感到的加速度水平降至最小。对轿车来说,尽管侧向运动、纵向运动、转向运动也对舒适性也有较显著的影响,但垂直方向上的影响仍占主导地位。乘坐舒适性的其他指标则体现在车辆加速、制动、转向时车身能否保持良好的姿态方面,明显的车身俯仰和侧倾运动一般被视为是不可接受的。因此,必须在一定的约束条件下尽可能地减小加速度和车身姿态角,这里所说的约束条件是悬架的有限工作空间和轮胎的动载荷合理范围。施加这些约束的理由是在保证较小车身加速度水平及良好车身姿态的同时,要尽可能减小轮胎与路面间的载荷运动,以保证操纵转向时具有良好的轮胎接地性。在操纵性能方面,还是有一些车辆特性指标可以被普遍接受,并被视为期望中的车辆特性,而期于的一些性能指标则代表了个人的喜好。操作性能的总体目标总体包括两个方面一是对于风的扰动或不平路面的干扰,车辆所产生的运动响应必须控制在最小范围;二是对驾驶员的输入响应则达到最优。实际上,在操纵性能分析过程中,驾驶员本身的作用不可忽视。人的控制能力实际上是惊人的,他们可以快速处理大量的信息,并根据当时的情形适时调整其控制策略。如赛车手征服各种不同路面的能力就地说明了这一点。然而,人们还是在普遍期望在正常驾驶时,自己投如的精力最少,以持久的控制行为中得以解脱。比如车辆在高速公路行驶时,人们普遍希望自己在驾驶时只需付出极小的控制输入就可以安全轻松地行驶。关于车辆驾驶员操纵控制模式的问题,可以由下图说明开环控制19图28驾驶员开环和闭环控制示意图也可以认为,在日常的驾驶当中,驾驶员一般以开环和闭环两种控制模式操作。比如在通常轻松的驾驶情况下,驾驶员一般以开环模式驾驶。当然,这还得依赖于驾驶员对车辆响应特性的熟悉程度,知道怎么样的输入产生期望中的输出,这样车辆就可以在无须校正的情况下能沿期望的路径行驶。当在操纵难度较大的情况下,如大转弯、超车或紧急转向时,驾驶员则以闭环控制模式操作。此时,驾驶员注意力高度集中地监视车辆的实际路径,而实际的行驶路径则被用来作为反馈信号,以使驾驶员持续不断地对控制输入进行校正。总之,期望中的汽车操纵特性可以归纳为(1)稳定性。伴随着外部干扰,车辆应具有迅速恢复原先稳定状态的能力,并且系统响应时间要小,同时还要保证有适当的阻尼。(2)转向性。尽管车辆的控制由驾驶员通过转向盘来实现,但实际的作用机理却是通过轮胎侧向力间接实现对车辆的转向运动控制。因此,任何削弱轮胎力生成与转向盘运动关系的因素,都将会降低汽车操纵性和可控制性。举例说明当车辆出现前轮抱死时,前轮胎无法提供侧向力,因而驾驶员此时就无法控制车辆的转向运动。(3)一致性。汽车运行的外部输入条件变化范围广泛,如不同的路面及天气条件等。这里所提的一致性,是指人们期望车辆的操纵行为能始终表现如一。如果车辆在外部条件变化时仍能保持一致的行为模式,就能降低操纵难度,减轻驾驶员车辆的负担。(4)标准性。通常驾驶员对某一车辆的操纵特性都会有一些比较明确的估计或期望。当首次驾驶一辆新车时,我们期望其特性最好与其他同类车辆相差不大,这样就比较安全。当然,对某些首次接触的新车型时,如果第一次驾驶采用后轮转向的车辆时,有经验的驾驶员也能很快的适应其新特点,而并不感到特别意外。但对普通车人来说,不希望有对这些操纵特性的变化,而希望将这些差异与心目中期望的目标模式减直最小。车辆与驾驶员之间的相互作用,如下图20图29车辆与驾驶员相互作用示意图3信号处理的原理31半主动悬架的控制系统模型根据路面条件和车辆运行速度对半主动悬架系统进行减振器阻尼力的在线调整,以提高车辆行驶平顺性和保证车轮接地的安全性,提出理论上和实际上都可行的控制方案。以2个自由度,即1/4车辆模型为研究对象,建立系统的非线形动力学模型,根据系统的数学模型提出一种半主动悬架阻尼力连续控制的控制理论,对系统的减振性能进行优化控制,根据这种控制策略可以使系统始终工作在与当前路面和车速相适应的最佳状态。32信号采集过程的基本原理试验测得相对位移信号和加速度信号,通过信号保持过后再滤波,滤波过后在将微弱的信号放大,通过A/D转化为计算机容易处理的信号,最后在通过D/A转化,经放大控制执行器也就是减振器改变阻尼从而达到乘坐的舒适性。在这个过程中信号采集是指位移传感器和加速度传感器所测得的物理信号。它是随时间的变化而变化。滤波就是用一个频率函数与输入信号的频普相乘得到输出,其意义就是在于对原始信号进行过滤,改变其频普成分,以达到削弱干扰,增强信号的目的。放大电路就是利用晶体管组成的放大电路,在生产和科学实验中,往往要求用微弱的信号去控制加较大功率的负载。A/D转换就是把模拟信号转换为数字信号,其数字形式可以是二进制,它一般包括以下几部分电路模/数转化、多路开关、采样保持放大器。其中多路开关是用来选择特定的信号,采样保持放大器用来储存瞬态模拟电压。计算机的作用是根据汽车工作的需要,把位移传感器和加速度传感器的信号用内存的程序和数据进行运算处理,并把处理结果送到输出电路。执行器(减振器)能根据其接受的信号改变磁流的大小,从而能够适当的改变阻尼的大小。214试验模型的设计从设计的经济,加工便宜等角度考虑,从所做的3个模型中选出其中一种符合期望的,现介绍如下41基于此次设计的有关参数本设计主要基于赛欧轿车的一些参数,但另一方面又不拘泥于这些参数。考虑到经济性和设计的适用性,必须对参数做出一些修改,使其更具有实际的应用价值。此外,也必须参考一些前人做过的试验数据,综合起来,使设计达到最佳的效果。连续可变阻尼的半主动悬架系统中,其作动器实际上就是一个连续可变的阻尼器与一个普通弹簧并联安装,其工作原理见图图41半主动悬架车辆模型理论上讲,半主动悬架的阻尼器应能独立的跟踪力需求信号,而与通过减振器本身的相对速度无关。力需求信号同样是根据某种控制策略由微处理器产生,和全主动悬架一样,其控制规律也可应用最优控制理论推出。但由于半主动系统的非线形限制,它只能消耗能量,而没有能量的输入,其最优控制实际上并不能完全实现,因此也不能称其为最优控制。图41所示的1/4单轮车辆悬架模型,半主动系统的运动方程可写成如下形式10112WTSMZKXZZU22BSU式中U可控的阻尼力。22纯粹的半主动系统减振器没有能量输入机构,因此就控制力U而言,当它与悬架相对速度符号相反时,我们唯一能做的就是将阀口充分打开,其结果就是使减振器上的消耗力为零。实际上的效果也许只是控制力U非常小而已,因为毕竟至少,因为毕竟至少减振器内的粘滞力仍在起作用。图42在这里悬上质量135KG,弹簧的刚度K17500KG/M,悬下质量201KG,轮胎的刚1M2M度172000N/M,无磁流变时的阻尼200(NS)/M。现在需要知道,的加TK1C12速度,以便较核下面设计的连接轴的弯曲应力和切应力。以下是MATLABSIMULINK得出的几个重要的参数图(仿真的模型是图42,在没有,1CU的情况下),在不考虑可控阻尼和可变阻尼的前提下仿真的加速度应该比实际的加速度大,在计算以下设计轴的动载荷也比实际的大,安全性也有所保障。仿真激励装置输入的波形为Y0005SIN1139。图形如下图43输出的悬上质量加速度波形为1M23图44输出的最大加速度为。输出的悬下质量加速度波形为2M图45输出的最大加速度为。(知道、的加速度大小对以下校核轴的应力以及弹簧的最大载荷是否超标有着1M2重要的作用)输出和的相对位移波形为12图46输出的最大位移24输出位移的波形如下图所示1M图47输出位移的波形如下图所2M图48选出的和的位移波形对确定导轨的长度有着关键性的作用1M242振动台、减振器等标准件的选取(1)振动台的有关参数,从苏州东菱公司的ES6A产品获得,具体技术指标如下最大正弦激振力为6000N;随机激振力为6000N;频率范围为12000HZ最大加速度为500M/S最大位移为51MM最大负载为300KG工作面直径为230MM(2)减振器是美国LORD公司的产品,最大行程为208MM,最小行程为155MM,体径为25414MM,轴径为10MM,输入电压为12V,响应时间为25,属于磁流变减振器。M(3)传感器的选取位移传感器是美国MEASUREMENTSPECIALTIES公司的产品,加速度传感器是丹麦B这两种材料的密度785G/3CM(1)第一轴(图片均为用PROE建的模型)在计算它的力之前先要考虑弹簧的受力T,以悬上质量作为研究对象,可以它只受到自身的重力、弹簧的弹力和产生的加速度,则可以列出下列方程11TMGA135(9812)2943(N)26图49它的受力不可忽视,左右两边“低支“对它有压力作用,在进行分析时我们可以用根据1/4车辆模型的简图来分析,受力如下图所示图410对系统受力分析则有2NTMA2TA2943207553053(N)它所受到的弯矩图如下所示图411MAXAXAX32MWDAX310690617D27轴最小的直径为20MM,所以弯曲应力满足要求另一方面MAX243QR62053013所以切应力也满足要求(2)较核第二根连接杆第二块连接板是最多是受上下挤压受力为3053N,相对于钢板来说很小,因此受到的压应力、弯矩、切应力都很小,在强度上是安全的。图412其受力如下图所示N轮胎轴的支持力图413由以抵消掉,不受弯矩和切应力,压应力也很小,故其强度满足要求。(3)螺栓的较核整个装置从轴向上看,只有两段用到M12的螺栓,每段都用2根来连接(第二板2个,第三板两个),此时由于整个装置上下运动可以把它看作动载荷35827140B02134CAFD对于铰制孔用螺栓联结钢5PS28MAX32105410966(MP)40MP所以螺栓也安全。(4)低支的较核该机械装置的低支受力也有一个危险截面,那就是同过第一轴的中心线平行于水平面的平面与低支相交的面,主要考虑到起拉应力是否符合要求有四个1015的截面2MP/F(1015)5088(MPA)B3054该数值非常小,比普通碳素钢要小得多,所以安全性很有保障。图41444弹簧的设计由于汽车厂家技术保密,难以查到赛欧轿车弹簧的具体尺寸,只能参考学校实验室的赛欧弹簧的尺寸,综合选取弹簧的刚度K17500N/M,在设计

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论