20kv输变电项目可行性研究报告_第1页
20kv输变电项目可行性研究报告_第2页
20kv输变电项目可行性研究报告_第3页
20kv输变电项目可行性研究报告_第4页
20kv输变电项目可行性研究报告_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

目录1、工程概述111设计依据112工程概况及建设必要性313设计原则414设计范围42、电力系统一次部分521电网概况522负荷统计及电力平衡923接入系统方案1124余热发电机接入1225电气计算1226设备选择1327电气主接线1328建设规模1329无功补偿14210电力系统一次部分结论143、电力系统二次部分1431系统保护1432安全自动装置1533调度自动化系统1534电能量计量系统164、通信部分165、变电部分1751站址概况1752总平面布置及工程设想2153主要设备选择2354变电二次2455过电压保护及接地装置2656全站照明2757消防2758环境保护2859节能286、电源侧部分287、输电线路部分2971导线、地线选型2972路径方案描述及技术方案3073主要气象条件3274机械电气特性3475绝缘配合、防雷和接地3676结构部分398、投资估算419、结论与建议421、工程概述11设计依据1)XXX水泥有限公司的可行性研究报告设计委托;2)XXX水泥有限公司提供的负荷资料及其他资料;3)XX市供电局供电局“十一五”电网发展规划。4)报告执行的技术依据如下该项目主要参考国家电网计2003249号关于颁发220KV输变电项目可行性研究内容深度规定的通知,并遵循以下规程、规范35110KV变电站设计技术规范(GB5005992)变电站总平面设计技术规程(DL/T50561996)高压输变电设备的绝缘配合使用原则(GB311788)电力装置的继电保护和自动装置设计规范(GB5005394)电力装置的电测量仪表装置设计规范(GBJ6390)供配电系统设计规范(GB5005295)建筑物防雷设计规范(GB5005794)工业与民用电力装置的接地设计规范(GBJ6583)通用用电设备配电设计规范(GB5005593)地区电网数据与监控系统通用技术条件(GB/T1373092)远动终端通用技术条件(GB/T1372992)地区电网电调自动化设计技术规范(DL500291)高压开关设备通用技术条件(GB11022)工业企业照明设计标准(GB5003492)电力工程电缆设计规范(GB5021794)电气通用图形符号(GB4728)电能质量公用电网谐波(GB/T1454993)交流电气装置的过电流保护和绝缘配合(DL/T6201997)交流电气装置的接地(DL/T6211997)电力变压器(IEC76)高压电缆选择导则(IEC1059)高压交流断路器(IEC56)额定电压1KV以上52KV以下的交流金属封闭开关设备和控制设备(IEC298)远动设备及系统工作条件(IEC87021)远动设备及系统性能要求(IEC8704)335KV交流金属封闭开关设备(GB3906)电力设备接地设计技术规范(SDJ879)额定电压35KV以下铜芯、铝芯塑料绝缘电力电缆(GB12706)低压配电设计规范(GB5005495)火力发电厂与变电站设计防火规范(GB5022996)变电站总布置设计技术规程(DL/T50561996)电力设施抗震设计规范(GB5026096)变电站建筑结构设计技术规定(NDGJ9692)火力发电厂与变电站设计防火规范(GB5022996)电力设备典型消防规程(DL502793)建筑设计防火规范(GBJ1687)建筑内部装修设计防火规范(GB5022295)火灾自动报警系统施工验收规范(GB5016692)城市区域环境噪声标准(GB3096)工业企业噪声控制设计规范(GBJ87)工业企业厂界噪声标准(GB1234890)污水综合排放标准(GB897888)厂矿道路设计规范(TJ22)110500KV架空送电线路设计技术规程(DL/T50921999)电网建设项目经济评价暂行办法国家电网公司输变电典型设计110KV变电站分册12工程概况及建设必要性XXX水泥有限公司(以下简称“工厂”)是由拉法基在中国的水泥业务与瑞安建业有限公司合并而成的合资企业,由拉法基集团管理。该厂位于XX区红炉镇龙井口村龙洋坪社,距市20KM,距XX市90KM。工厂项目总投资6575867万元,生产规模为日产熟料4600吨,年产熟料15951万吨,年产水泥25266万吨。生产及辅助设备总装机容量42510KW,计算有功功率30830KW,年总耗电量252109KWH,年余热发电量576107KWH。工厂采用先进水平的新型干法旋窑熟料水泥生产线,符合“控制总量,调整结构,提高质量,保护环境”的产业政策,并能充分利用当地的自然资源、良好的市场环境。通过分析计算,具有重大的社会、经济效益。为满足工厂的用电需求,拟建的110KV拉法基输变电工程是非常必要的。13设计原则按常规变电站设计,兼顾供电可靠性和投资造价,同时注意保护环境。14设计范围本设计包括工厂总降站接入系统方案、总降站建设方案,电源线路路径、线路技术方案,以及工程投资估算。2、电力系统一次部分21电网概况211电网概况电网的供电范围包括区、荣昌县、双桥区、大足县全境,以及铜梁县和江津市的部分边缘地区,供电面积四千平方公里。地区地处XX西部,近年来地方经济持续稳定发展,“十五”期间一直保持着逐年增长的趋势,供区内国内生产总值由2000年的13201亿元上升到2005年的24846亿元,年平均增长率为1348,2005年达到了1735高增长水平。区境内有500KV板桥变电站一座,位于区板桥镇凉风垭村,是川电东送通道的重要枢纽变电站之一,XX电网500KV日字网环的重要组成部分,XX西部的重要电源支撑点,为电网的供电能力提供坚强的保证。电网供区内有35220KV变电站25座,变电容量171745MVA,属供电局管理。其中220KV变电站三座,变电容量840MVA,220KV线路17条,线路长度为34805KM;110KV变电站十一座,变电容量7505MVA,110KV线路27条,线路长度为37497KM;35KV变电站12座,变电容量12695MVA,35KV线路24条,线路长度为26196KM;10KV开闭所七座;辖区内并网电厂五座;直属供电客户371872户,配网一次装接容量924MVA。电网主电源由220KV来苏站、邮亭站、茶店站提供。来苏站220KV线路8回,主变容量两台120MVA;邮亭站220KV线路5回,主变容量两台120MVA;茶店站220KV线路4回,主变容量两台180MVA。辖区内并网电厂有电厂、永荣电厂、建荣电厂、荣昌电厂、长河电厂,总装机容量(3865MW)。其中,永荣电厂、长河电厂为自备电厂。电厂位于区松溉镇,装机容量270MW,经来苏站并网。110KV双凤站、汇龙站、胜利站、站、草坪站、供区片区负荷;110KV双河站、桑树坡站、仁义站供荣昌县片区负荷;110KV车城站供双桥区片区负荷;110KV龙水站、马家坡站供大足县片区负荷。各变电站负荷情况详见表21。表21电网变电站2007年负荷情况表电压等级变电站现有规模(MVA)终期规模(MVA)最高负荷(MW)容载比来苏站2402401811133邮亭站24024015998150220KV茶店站36036010494343站100100831120汇龙站1001503185314胜利站10010038263双凤站715805007143草坪站100100971031大足站8080489164龙水站8080423189马家坡站636347134双河站6363252250110KV桑树坡站6363383164仁义站315631653191南郊站16161602100松林坡站631264158临江站81654148隆济食站510356140新联站20201193168安富站126126642196盘龙站126126685184河包站51022227观胜站81644817935KV西湖站126126723174212西南片区电网概况工厂位于西南片区,厂址在红炉镇龙井村龙洋坪社,距离约20KM,该片区的电源为220KV来苏变电站。片区电网地理接线图如下220KV来苏变电站通过苏邮西、苏邮东线与邮亭变电站联络,进而从500KV板桥变电站取得电源,通过苏黄北、苏黄南线与220KV黄荆堡变电站联络,同时电厂通过该站上网,是XX220KV系统的重要节点。目前该站有主变2台/120MVA,2007年最高负荷1811MW,相应的容载比为133。220KV配电装置采用双母线带旁路接线,110KV配电装置采用双母线带旁路接线,10KV配电装置采用单母线分段接线。110KV出线间隔8回,目前已利用6回,预留2回,预留间隔已作规划,将用于110KV梧桐变电站的电源。22负荷统计及电力平衡221负荷统计工厂建成投产后,其负荷情况统计如下总装机容量42510KW计算有功功率30830KW平均需要系数072自然功率因数075补偿后功率因数095222电力平衡随着社会经济的发展,用电负荷快速增长,电网220KV系统容载比偏低,供电压力较大,其中220KV来苏站、邮亭站、车城站容载比均低于规划导则的要求。2010年供电局负荷平衡情况如下表表22供电局2010年负荷平衡情况表站名站双凤站草坪站胜利站汇龙站大安站松既站南郊站红炉站小计容量(MVA)100715100100100315505063666负荷MW613534424528272915316片区容载比164204294238222113185172420211站名车城站龙水站马家坡站天星站万古站城南站小计容量(MVA)80806331531550336负荷MW5054492524202220双桥片区容载比160148129126131250151站名桑树坡站仁义站双河站梧桐站武城站小计容量(MVA)63636350100339负荷MW4431263523159荣昌片区容载比143203242143435213站名来苏站邮亭站茶店站车城站荣昌站电压等级220千伏110千伏容量(MVA)240240360180容量10201341负荷MW161184205147负荷66956695220KV系统容载比149130176122容载比152200来苏变电站负荷预测如下表表23来苏变电站负荷预测表来苏变电站容量MVA负荷MW容载比2007240181133200824016314720092401351782010240161149十一五期间,虽然电网的负荷不断增长,但因系统运行方式的调整,来苏站的容载比反而有所升高。由此可见,通过运行方式调整,可使来苏变电站获得较大的容量裕度。正常运行方式下,来苏变电站供给110KV双河站和双凤站;特殊运行方式下,除双河站和双凤站外,还包括110KV站、汇龙站和胜利站的一部分负荷,负荷较重。预计随着220KV茶店变电站送出工程的实施,站、汇龙站和胜利站均由茶店变电站直接供电,负荷转移至来苏变电站的几率降低,来苏变电站供电压力将得到减轻,具有供给工厂的能力。23接入系统方案各电压等级的输送能力和合理输送范围为35KV电网输送容量215MW,110KV电网输送容量1050MW,220KV电网输送容量100500MW。因此,为满足工厂的用电需求,并合理利用电网资源,其总降站应接入110KV电网。结合电网现状,可以考虑如下接入系统方案从220KV来苏站、邮亭站或茶店站接入系统,或者由110KV变电站转供。从220KV来苏站接入通过运行方式调整,可提高来苏站的供电能力,线路长度约10KM,需扩建电源间隔。从220KV邮亭站接入目前邮亭站容载比过低,供电能力不足,线路长度约15KM,需扩建电源间隔。从220KV茶店站接入有供电能力,线路长度约25KM,且线路经过城区,存在大量交叉跨越。由110KV变电站转供受限于现有线路的输送容量,并且存在功率迂回。综合考虑电源点供电能力、线路长度和交叉跨越、工厂对供电可靠性的要求等情况,确定110KV拉法基总降站接入系统方案为以双回线路接入220KV来苏变电站。24余热发电机接入根据拉法基工厂具体的生产情况,在生产过程中有余热可以利用。工厂根据余热量,拟建的自备热电站装机容量75MW。由于拉法基工厂负荷电压等级为10KV,故余热发电机的接入采用10KV电压等级,并网点设在总降站10KV母线。余热发电机只向厂内10KV负荷供电,在厂内实现出力与负荷平衡。本报告只考虑余热发电机接入所需的10KV开关柜,余热发电系统设计施工由工厂完成。25电气计算根据拉法基提供的负荷资料,总装机容量42510KW,计算有功负荷30830KW,按补偿后功率因数095计算,电源线路总负荷潮流为32453KVA。系统最大运行方式下,根据220KV来苏变电站110KV母线短路电流,经计算,拉法基输变电工程总降站110KV母线三相短路电流为99KA,随着系统建设和运行方式调整,短路参数将还有变化。26设备选择110KV设备按开断能力25KA选择。10KV设备按开断能力315KA选择,余热发电机接入回路按40KA选择。10KV并联电容器成套装置选择集合式并联电容器。按经济电流密度计算,选择导线截面150MM2。27电气主接线110KV进线本期2回,终期2回,采用单母线接线。10KV侧采用单母线接线。28建设规模根据负荷统计结果,选择1台容量为45MVA的变压器,本期建设145MVA,终期145MVA。110KV侧进线本期2回,终期2回。10KV侧出线本期8回,终期10回。电气主接线见附图B08102KA010101(电气主接线图)。29无功补偿根据从拉法基(技术服务有限公司)了解的情况,各生产车间的主要负荷为电机设备,其中大电机装设有无功就地补偿设备,其它电机未作补偿,无功负荷较大,一般按主变容量的30补偿。拟在主变低压侧配置无功补偿电容器4组,每组3000KVAR。210电力系统一次部分结论110KV拉法基总降站以双回线路接入220KV来苏变电站,本期建设规模为145MVA,终期为145MVA,110KV进线2回,终期2回,采用单母线接线,10KV出线本期8回,终期10回,采用单母线接线。110KV设备按开断能力25KA选择,10KV设备按开断能力315KA选择,余热发电机接入回路按40KA选择。当前220KV来苏变电站具备供电能力,为减轻供电压力,远期应调整系统运行方式,转移负荷,或者考虑增容。3、电力系统二次部分31系统保护311一次系统概况工厂总降压站电源从220KV来苏变电站110KV母线接入,采用双回线路接到该站。来苏变电站110KV接线为双母线带旁路接线方式;图2202010年朱沱变电站接入系统方案潮流图(丰小方式)工厂总降压站主变压器终期为145MVA,本期为145MVA;110KV接线采用单母线接线,进线2回。10KV采用单母线接线,出线10回;10KV电容器出线4回;10KV站用电源1回;主变低压侧配置无功补偿电容器4组,每组3000KVAR。312系统保护配置方案本系统为中性点直接接地系统,针对继电保护的基本要求即可靠性、速动性、选择性和灵敏性的原则设置了如下几种保护110KV线路保护由于拉法基工厂总降压站为负荷终端变电站,因此,本次仅在220KV来苏变电站110KV侧配置线路保护。线路保护采用微机型保护,具有多段相间及接地距离保护、多段零序电流保护等;具备三相一次重合闸和低周低压解列等功能。母线保护应完善220KV来苏变电站110KV母线差动保护的接入。32安全自动装置拉法基工厂总降压站由于有自备发电厂,为保证系统的稳定运行,本期在来苏变电站110KV线路保护考虑配置低周低压解列功能。33调度自动化系统根据XX电网调度机构职权划分原则,本期新建110KV拉法基工厂总降压站属供电局地调直接调度。调度管辖范围内的远动信息应传送地调,以满足调度对变电站运行状况实时监控的需要。34电能量计量系统按照DL/T4482000电能计量装置技术管理规程的规定和根据XX市电力公司贸易结算用电能计量装置技术规范(试行)的通知,110KV拉法基工厂总降压站的计量属关口计量,其计量点设在电源侧(即220KV来苏变电站侧)计量。为便于生产成本核算,本工程在变电站进线处装设计量装置,并考虑变电站内部计量,如有其他多种性质的用电,还应考虑分别计量。计量用电流互感器与保护、测量用电流互感器二次绕组应各自独立,计量采用专用电压互感器和电流互感器绕组。电能表按双配置,采用三相四线制多功能电能表,电能表精度应满足电能量计量的要求,并具有双RS485串口输出。每条进线的如电压、电流、频率、功率因数、有功、无功,需量功率及其三种电能要传输到工厂PCS,来苏站电能数据要传输回工厂。电能量信息应接入供电局的电能量管理系统。4、通信部分110KV拉法基变电站通信方案考虑双光纤通信方式,根据局现有的光纤网络结构,在新建的110KV来苏拉法基线路上架设两根12芯OPGW光缆,在拉法基总降站内增设SDHSTM4622MPIT/T设备一台,采用11备份,PCM一台,综合配线柜一台,高频开关电源225A、200AH一套,防雷柜10KVA/380V一台;在来苏站增加光方向板一块,光纤终端盒一个。5、变电部分51站址概况511、站址选择工厂厂址已选定,在其总体规划中已预留总降站站址及其出线电缆隧道,且该站址具备建站条件,故站址唯一,预留土地大小约6655M2。512、站址区域概况1)站址位于XX市区红炉镇龙井口村龙洋坪社。2)站址位于山间空地,地势平坦,海拔高度约530M,站址区域内高差不超过3M,未种植农作物。3)站址土地属当地村民所有,地区人均耕地092亩。4)站址北侧约30M为大丰公路,目前路况良好。厂区总体规划沿工厂厂内运输公路进站,本设计不作更改,进站道路长度约200M。5)站址远离城镇,无公共服务设施可供利用,但可以利用厂内相关设施。6)站址附近无历史文物、不压覆矿产,无军事设施、机场、导航台、风景旅游区等设施。513、站址的拆迁赔偿情况站址范围内有民房一处,其余为撂荒土地,拆迁赔偿工作由工厂负责,目前正在开展中。514、进出线条件本站终期建设110KV进线2回,从220KV来苏变电站引来,站址北面无生产设施和高山阻隔,可以进线。来苏站在拉法基总降站东南方向,工厂生产设施也位于总降站南面,处于进线路径上,因此,线路架设至工厂厂区附近,需设法绕过生产设施、料场及原料传送带等。本站终期建设10KV出线10回,电缆出线,电缆沟沿厂区内公路建设。515、站址水文气象条件1)境内江河水库水位远低于站址标高,站址无洪水淹没危险。总降站可利用工厂排水设施,无内涝隐患。2)气象条件极端最高气温428极端最低气温31年平均气温171年平均气压9769MBAR年平均降水量11418MM小时最大降雨量621MM一次最大降雨量2148MM日最大降雨量2148MM年平均风速16M/S(地面上10M)最高风速187M/S(地面上10M)主导风向北、西北湿度83516、排水工厂设计有污水处理站,站内生活污、废水首先排入污水处理站,经处理后用于浇灌绿化、浇洒道路等。517、给水水源工厂生产、生活及消防用水均取自关门山水库,拟在关门山水库边修建取水泵站,使用全自动给水设备由关门山水库取水加压供全厂用水,总降站用水可利用该供水系统。518、站址工程地质地勘资料表明,站址区域土壤覆层厚度017365M,基岩顶面标高5273553083M,无不良地质现象,区域地震烈度度,为可进行建设一般地段。持力层选择基岩中等风化带,基础型式建议为柱下独立基础。519、土石方情况站址场地较平坦,土方可就地平衡。5110、大件运输总降站主变压器带油总重约66T,沿途道路桥梁承重满足大件运输要求。5111、站址环境及变电站防污目前,站址周边无大的污染源,主要污染来自投产后的工厂。水泥生产对环境产生的污染有粉尘、废气、废水和噪声四个方面,水泥生产中所排放的粉尘包括原燃料粉尘、熟料粉尘、水泥粉尘等,废气包含一定含量的SO2和NO2,厂区工业用水基本上是闭路循环使用,循环率达90,部分可直接排放,废水产生量很少,工厂的高噪声源有煤磨约85DBA,水泥磨约85DBA,窑尾排风机约90DBA,罗茨风机约100DBA,空压机约85DBA。工厂设计了收尘系统,在平面布置、噪音隔离等方面采取了一定的措施,但降尘对变电站运行有不良影响。根据XX电网污区分布图实施细则,该站位于D级污秽区,电气设备外绝缘标称爬电距离44MM/KV。5112、通信干扰该站附近无通信设施。5113、施工条件该站与工厂其他生产设施的施工同时进行,材料堆放、设备存放、施工机械安装等施工用地与工厂施工统筹安排,能保证施工用地的需求。施工用水引自关门山水库。施工电源由35KV新联变电站出一回10KV线路,线路长度约10KM。5114、收资情况和必要的协议与该站建设有关的规划、国土、水利、电信、环保、地矿、文物、文化、公路、铁路、军事等协议由工厂负责办理并存档,本设计不再列入。5115、站址概况部分结论沿用工厂总体规划中总降站的位置作为站址,位于红炉镇龙井口村龙洋坪社,具备建站条件和施工条件,110KV进线需绕过工厂,10KV出线方便,工厂降尘对设备绝缘有不良影响。52总平面布置及工程设想521、总体规划110KV进线沿东北方向进入总降站,110KV配电装置布置在总降站东北侧,10KV配电装置布置在西南侧,主变布置在两者之间。利用厂区内道路,从东南侧进站,站内设置设备运输通道及完善的消防、环保设施。522、总平面布置方案结合主接线方案、建设规模和站址情况,拟定了2个平面布置方案。方案1110KV选用AIS设备,户外软母线中型布置;主变户外布置;10KV选用中置柜,户内双列布置;并联电容补偿装置户内布置。见附图B08102KA010102。方案2110KV选用GIS设备,户内布置;主变户内布置;10KV选用中置柜,户内双列布置;并联电容补偿装置户内布置。见附图B08102KA010103。总平面布置方案1占地286125M2,方案2占地23056M2。为降低综合造价,设计按方案1考虑。523、建筑规模及结构设想平面布置方案1,生产综合楼长47M,宽105M,为单层建筑。布置有10KV配电装置室,主控室、电容器室、接地变室及其他辅助房间,建筑面积493M2。生产综合楼各配电装置室及主控室均设2个对外出口,建筑物火灾危险性为丙类,建筑按二级耐火等级设计施工。主变周围及防火墙,按一级耐火等级设计施工。生产综合楼抗震设防类别按GB500591992执行,安全等级采用二级,结构重要性系数为10。生产综合楼采用钢筋混凝土框架结构,楼(屋)面均采用现浇钢筋混凝土梁板。524、采暖通风主控室、10KV配电装置室、蓄电池室均装设空调,用于夏季降温。变电站通风以自然通风为主,事故通风采用自然进风、机械排风系统。电容器室、接地变室设轴流风机,风机启停采用温度控制,夏季可限制室内温度,又节约用电。525、给排水站内用水接入工厂供水系统。站内排水采用分流制,采用有组织、自流排放方式,设置生活污水管、雨水排水管。生活污水先经化粪池处理,再经过生活污水排水管、污水检查井,统一排放至工厂污水处理系统。主变附近设置事故油池,含油污水通过暗管排入事故油池,经油水分离后处理合格的废水进入污水处理系统,分离出的废油予以及时回收,防止污染环境。事故油池为地下式,钢筋混凝土结构。场地、屋面雨水经雨水口、雨水检查井、排水管收集后汇入排水集中井,统一排放。53主要设备选择531主变压器低损耗的三相风冷式油浸式有载调压变压器;额定容量45MVA;额定电压1108125/105KV;接线组别YN,D11接线;阻抗电压UK105;套管CT100200/5。532110KV设备断路器(配弹簧机构)额定电流1250A额定开断电流25KA动稳定电流63KA电流互感器2300/5A电容式电压互感器110/3/01/3/01/3/01KV110/3/01/3/01KV无间隙氧化锌避雷器108/28153310KV设备选用金属铠装中置式开关柜;真空断路器进线开关3150A315KA馈线开关1250A315KA余热发电机接入回路开关1250A40KA534无功补偿10KV并联电容器组选用集合式成套电容器装置,配全膜电容器,采用单星型接线并配干式空心电抗器。535接地变压器带站变站用接地变压器电压105225/04KV,接线组别ZN,YN11,阻抗电压4。54变电二次为了进一步提高变电站内电气设备监控水平和现代化管理,变电站按全微机综合自动化变电站设计。本站除配置后台机作为就地监控操作外,与供电局调度端接口。保护屏柜,安全自动化设备,监控设备及公用设备等布置在主控制室内(10KV保护测控装置采用就地安装)。541监控系统监控系统采用变电站层和间隔层两层式结构,变电站层设监控主机和通信控制机。变电站按双机配置通信控制机,以保证通信的可靠性。监控系统与继电保护装置各自独立,仅有通信联系。监控系统不影响继电保护装置的可靠性。间隔层的测控信号装置仍采用面向对象的单元式监控装置,其控制模式按一个元件(一个间隔),一套装置分布设计配置,各装置之间仅通过网络联结,信息共享。整个系统不仅灵活性很强,且可靠性非常高,任一装置故障仅影响一个局部元件,而不涉及其它装置。542保护系统本站保护装置均采用微机型成套保护装置,按部颁继电保护和安全自动装置技术规程要求,具体配有主变保护、10KV线路及电容器保护、公用设备等。为提高供电的可靠性,在本站的110KV、10KV侧各装设一套BZT备用电源自投装置。543直流系统直流系统采用110V电源。110V直流系统供给计算机监控设备、保护设备、断路器跳合闸和变电站的事故照明等用电。直流系统选用一组200AH的免维护铅酸蓄电池,采用单母线分段接线方式。直流馈线采用辐射型供电方式,两段直流母线上设一套微机绝缘装置。充电设备采用智能型高频开关电源。本站选用5只10A的模块,其中3只作为充电模块,2只作为控制模块,采用N1热备份。全站须设置不停电电源(UPS)系统,为变电站内计算机监控系统、保护装置及通信设备等重要二次设备提供不停电电源。UPS系统不自带蓄电池组,直流电源由站内110V直流系统提供。544站用电系统本站所用电源由两面站用电源柜组成,站内设置10/04KV站用变压器一台,接入10KV母线,第二回站用电由施工电源转接。380/220V三相四线制,接线为两段单母线分别供电,正常时两台站用变压器各供本段母线负荷,同时作另一段母线的备用电源。当某段母线的电源失电时,备用电源自动切换,使供电继续。545计量方式电量贸易结算点设在220KV来苏变电站内,电能表安装在主控制室内的电度表屏上。拉法基总降站主变各侧计度采用全电子电能表、集中配屏安装;10KV线路计度采用全电子电能表装于开关柜上。10KV母线上装有电压自动统计仪。546五防系统本站操作闭锁采用微机“五防”系统加刀闸电气闭锁相结合方式。微机“五防”要求与监控系统配合,信息量采集取自监控系统。断路器及刀闸采用电脑锁防误操作,10KV开关柜采用机械式五防闭锁。整套微机“五防”系统结构采用模拟屏柜式结构,以组屏的方式放置于监控保护室内。其中五防模拟屏还能通过与后台机的连接实时反映运行设备的电气模拟量。110KV电动刀闸操作回路配置有完善的电气闭锁。55过电压保护及接地装置全站构建筑物及电气设备的过电压保护以及全站接地装置均根据国标及部颁有关规定设计。为防止110KV线路雷电浸入波对主变压器及其他电气设备的危害,在110KV进线侧装设金属氧化锌避雷器;主变压器到110KV母线距离短,故主变压器110KV进线侧不装设避雷器,但是为防止雷电波的感应过电压危害低压绕组绝缘,在主变压器的10KV侧装设避雷器。为防止电容器柜操作过电压,在并联电容器首端装设氧化锌避雷器,另外在真空断路器开关柜内均装设氧化锌避雷器。为防止直击雷对站内设备造成危害,全站设置有避雷针,建筑顶设置有避雷带,以保护站内建构筑物。全站接地装置利用自然界地体和人工接地体相结合,敷设水平接地带为主并与垂直接地体组成全站接地网,采用多层接地和深埋接地极等方式,以满足接地的要求。56全站照明全站照明采用正常照明和事故照明,正常照明由380/220V所用配电屏供电;事故照明正常时由380/220V所用配电屏供电,事故时自动切换至直流系统供电。主要场所的照明及控制方式主控制室采用荧光灯、白炽灯混合照明,并采用分开关控制;配电装置室可采用投光灯配合荧光、白炽灯混合照明,并采用分开关控制;户外采用草坪灯作为巡视照明。57消防采用一般常规消防措施主变附近设置沙池、消防棚,屋内各级配电装置室、电容器室及继电器室内设移动式化学灭火器;电缆敷设按防火和阻止延燃设计;综合楼室内外均设置消防栓,消防用水有厂区供水系统公给,设置火灾自动报警系统。58环境保护变电站对环境的影响主要有生活污水、变压器油和噪声。生活污水先经化粪池处理,再经过生活污水排水管排放至工厂污水处理系统。主变附近设置事故油池,含油污水通过暗管排入事故油池,经油水分离后处理合格的废水进入污水处理系统,分离出的废油予以及时回收,防止污染环境。变电站噪声主要来源于冷却风机运行和变压器铁心、外壳等构件的震动。条件许可时,选择低噪音变压器;若选择常规变压器,则严格限制噪音值,并通过平面布置及措施降低噪音对站外的影响,主变两侧的防火墙也有阻隔衰减噪音的效果。59节能变电站拟采取如下节能措施A、合理选择电容器组的投切组合,实现无功就地平衡,避免无功功率的长距离传输;B、站用变、照明灯具等设备选用节能产品;C、主变冷却风机、综合楼轴流风机可根据温度自动启停,避免长时间运转。6、电源侧部分根据接入系统方案,110KV拉法基总降站自220KV来苏变电站接入系统,需在来苏变电站扩建2个110KV间隔。扩建部分位于来苏变电站110KV配电装置右侧(面向出线方向),现为供水设备用地,将水塔及水泵房拆除后,土地面积满足扩建需要。根据220KV来苏变电站短路电流,110KV设备按开断能力40KA选择。110KV采用双母线带旁路接线,户外配电装置采用软母线半高型布置。扩建工程包括拆除水塔1座、新建110KV出线间隔2个,扩建110KV母线1跨,完善相应的二次部分,还建水塔1座,所有设备基础、母线支构架为新建。7、输电线路部分71导线、地线选型711电源传输容量拟建工厂110KV总降站主变容量145MVA,线路工程为双回供电,线路最大输送容量45MVA,单回线路输送容量225MVA,最大工作电流118A。在事故N1运行方式下单回线路最大输送容量为45MVA,则事故N1方式时最大电流236A。712导线选择按正常输送容量选择导线截面,即225MVA,按水泥行业负荷性质,取经济电流密度086,则导线选择截面积为2251373PSMJUE据此,在正常运行方式下,150MM2能够满足输送电能的要求,初步可选择LGJ150/25型钢芯铝绞线。按N1运行方式情况下校验导线截面,N1情况下输送电流为236A。150MM2导线最大容许温度70,环境温度为25时,最大允许载流量为450A;环境温度为40时,最大允许载流量为345A,大于236A,能够满足要求。所以,导线选择LGJ150/25钢芯铝绞线。713地线选择根据供电局通讯规划,为保证该站通讯畅通,二根地线均选用12芯OPGW光纤,具体要求在初设中进行论述。72路径方案描述及技术方案721路径方案描述按系统论述方案,线路部分需从220KV来苏变电站出2回线路至龙井口村工厂110KV总降站。为提高线路运行可靠性,在线路事故N1情况下保证总降站能正常运行,拟从来苏变电站出2条单回线路至总降站,暂定为110KV来龙东线、110KV来龙西线。1)线路走廊来龙东线从来苏变电站110KV来汇线间隔出线,12利用原来汇线塔挂线,然后右转经黄家大院子、何家院子,穿越220千伏金苏南线、金苏北线后左转经陶家沟、柏洋湾、花坟山、斑竹山,继续左转翻越阴山林区后至工厂110KV总降站。全线长105KM,曲折系数106。来龙西线从来苏变电站110KV来永线间隔出线,12利用原来永线塔挂线,然后左转靠近110KV来双北线东侧行至佛耳岩后右转经龙凤桥、龙家院子、三关大塘、翻越阴山林区后至工厂110KV总降站。全线长103千米,曲折系数104。来龙东线、来龙西线出线间隔利用原来汇线、来永线间隔,来汇线、来永线则利用本次新扩建间隔出线,需新建同塔双回线路约06千米,接至原34间。为防止110千伏线路相互交叉,本次拟建来龙东线、来龙西线其它方案无可比性,该方案路径唯一。详见110KV来龙东线、来龙西线路径方案图(S08102KA010101)。2)间隔调整情况为避免新建来龙东西线和其它110KV出线发生交叉,工程在来苏变电站110KV出线间隔北侧新扩建2个间隔,新建来龙东西线利用来永线、来汇线原间隔出线,来永线、来汇线则调至新扩建间隔出线。图71来苏变电站110KV北侧出线及间隔扩建场地情况本期出线利用来汇线、来永线间隔后,原来汇线、来永线需新建线路约06千米,导地线型号不变,新立双回耐张塔3基。更换导地线型号及长度见下表来汇线、来永线(同塔双回)导线型号地线型号长度(M)LGJ150/25GJ356003)交叉跨越情况穿越220千伏线路4次,跨越10KV线路20次、低压线通讯线120次,公路2次。73主要气象条件731主要气象条件取值按照110500KV架空送电线路设计技术规程(DL/T50921999),设计气象条件应根据沿线的气象资料和附近已有线路的运来汇线间隔扩建间隔来汇线行经验确定。110KV线路的气象条件取值的重现期为15年一遇。工程线路位于境内,所以主要收集了气象站的气象资料,并参考已建出线线路的设计气象条件,从而确定出本线路工程所用气象条件取值。732气温及雷暴日气象站提供的历年主要相关气象观测记录如下表站名项目气象站观测场标高(M)2591平均气温()183极端最高气温()422极端最低气温()18平均雷暴日(天)364最多雷暴日(天)51根据上表所列数据,参考全国典型气象区的划分,确定出本工程采用如下设计数据平均气温()15最高气温()40最低气温()5年平均雷暴日(天)40733最大风速根据气象站资料进行频率分析,15年一遇15M高10分钟平均最大风速为22M/S,线路路径主要区段为丘陵,不具备形成大风的条件,参照周边已运行的电力线路设计资料,按110500KV架空送电线路设计技术规程中603条之规定,确定出本工程设计用最大风速为25M/S。734线路覆冰根据气象台站资料显示,本线路所在地区年均气温为183,最低气温为18,气候温和,根据沿线调查,线路无覆冰现象,冬季地面偶有积雪、薄冰;本线路所经地形为丘陵,最高海拔高程为423M,参照周边已运行的电力线路设计覆冰资料,确定本线路按不覆冰设计。735气象条件组合根据上述和结合全国典型气象区划分表,确定本工程设计用气象条件组合如下表。条件项目温度风速M/S冰厚MM最高气温4000最低气温500年平均气温1500最大覆冰500最大风速10250外过电压15100内过电压15150安装情况0100全年雷电日4074机械电气特性导线机电参数如下导线型号名称LGJ150/25铝股数/直径MM26/270钢股数/直径MM7/210铝截面MM214886钢截面MM22425综合截面MM217311计算外径MM1710单位重量KG/KM601瞬时破坏张力N54110温度膨胀系数1/189106弹性系数MPA76000制造长度M2000导线的防振措施本工程导线采用防振锤进行防振,对于防振锤的选型,拟选用节能型FDZ组合防震锤,该防震锤有效保护频率范围广,使用寿命长,电磁损耗低。导线使用防振锤型号如下表导线型号LGJ150/25防振锤型号FDZ3防振锤按等距安装,防振锤安装个数与档距(L)关系如下表使用个数型号123FDZ3L350M350ML700M700ML1000M因地线采用的是12芯OPGW复合光纤,其机械特性及防振措施在初设中按厂家提供数据后提出具体要求。75绝缘配合、防雷和接地751污秽区划分根据现场实地调查和XX市电力公司污秽等级划分,本工程污染除城市综合污染外,线路附近无其他大的污染源,确定本工程全线按D级污秽区设计。752绝缘子选型1)目前高压输电线路上所使用的绝缘子主要有合成棒式、玻璃和瓷质三种。合成棒式绝缘子为近年来发展起来的新产品,自洁性能良好,施工及运行维护方便,但其运行经验有待进一部总结;瓷质绝缘子使用的时间长,生产、运行经验丰富,但绝缘子出现零值不易发现;玻璃绝缘子具有零值自爆的特点及较好的抗污自洁能力,维护方便,有成功的运行经验,为运行单位所喜爱,用于居民区是否安全还需总结。因本线路经过区域在野外,拟采用自洁性能好的绝缘子。初步拟定本工程耐张采用LXHY470型玻璃绝缘子,变电站出线构架侧采用XWP270悬式绝缘子;直线采用FXBW3110/100合成棒式绝缘子。2)绝缘子的主要尺寸及特性表主要尺寸(MM)电气特性工频放电电压KV有效值不小于雷电冲击耐受电压机电破坏负荷重量型号高度盘径爬距连接标记湿闪击穿KVKNKGLXHY470146255400164513013070480XWP270146255400451201207070FXBW3110/1001180100/15031501623055010068753绝缘配合按照高压架空线路和发电厂、变电所环境污区分级及外绝缘选择标准(GB/T164341996),D级污区为250320CM/KV标称电压UM。为使所选绝缘子片数对该污区能有一定裕度,计算用爬电比距值按29考虑。按此计算出的绝缘子片数见下表型号高度HMM盘径DMM几何爬电距离L0MMD级污区LXHY470146255400798XWP270146255400798FXBW3110/1001180100/15031501支本工程绝缘子串片数一览表绝缘子D级污区类型型号强度(KN)片数支数悬垂FXBW3110/1001001支跳线悬垂LXHY470708片耐张LXHY470708片2联耐张XWP270708片用于构架按照110500KV架空送电线路设计技术规程DL/T50921999规定,绝缘子设计安全系数为最大使用荷载情况27,断线情况18,断联情况15。在各运行条件下带电部分与铁塔构件的最小空气间隙值应大于下表所列值工作状态工频电压操作过电压雷电过电压间隙值M025070100754防雷和接地本工程所经地区年均雷电日为40天,属中雷区。全线架设双地线进行保护,地线对边导线的保护角不大于15度。在档距中央,气温15,无风时,导线与地线之间的距离能满足S0012L1的要求式中L为档距,S为导线与地线之间的距离。地线逐基杆塔接地,为便于变电站接地网接地电阻测量,进出线门型构架上地线耐张串加装一片XDP70C型自带间隙无裙绝缘子。本线路每基杆塔均敷设人工接地装置,接地装置为浅埋式水平幅射接地体,接地体选用10圆钢,全线接地电阻不宜大于7。755绝缘子串及金具根据本工程荷载条件,导线悬垂串采用单联悬垂绝缘子串,对于跨越主干道公路、人口密集地区,以及重要房屋等跨越采用独立双挂点结构;导线耐张串一般为双联绝缘子串组装型式,进出线档为单联。绝缘子串组合型式及使用范围详见下表线型类别型式用途HX用于一般直线塔SXH双联加预绞丝护线条用于重要交叉跨越悬垂串TX单联加铝包带跳线用用于大转角杆塔边相跳线N双联耐张串用于一般档耐张转角杆塔TN双联加调整板用于一般档耐张转角塔导线耐张串DN单联耐张串用于变电站进出线档门型架侧TDN单联加调整板用于变电站进出线档终端塔侧以上绝缘子金具串组合型式,在已投运的其它同类型110KV线路中广泛使用,施工、运行情况良好。绝缘子设计安全系数满足设计规程(DL/T50921999)801规定。全线金具绝缘子串示意图详见金具绝缘子串型一览图(S008102KA010104)。工程二根地线均采用12芯OPGW光纤,其金具按厂家提供金具进行安装。756换位及相序配合本线路导、地线均不需换位。76结构部分761塔型选择及主要设计原则1)杆塔型选择直线水泥杆选用ZG1、ZG2普通钢筋混凝土电杆,该系列杆由300等径普通钢筋混凝土杆段、平面(型钢)横担、拉线作为稳定组成的门型杆。300杆段长度有45M及60M两种,运

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论