专利和能源转型:清洁能源技术创新的全球趋势(英)-IEA_第1页
专利和能源转型:清洁能源技术创新的全球趋势(英)-IEA_第2页
专利和能源转型:清洁能源技术创新的全球趋势(英)-IEA_第3页
专利和能源转型:清洁能源技术创新的全球趋势(英)-IEA_第4页
专利和能源转型:清洁能源技术创新的全球趋势(英)-IEA_第5页
已阅读5页,还剩115页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Patentsandthe

energytransition

Globaltrendsincleanenergytechnologyinnovation

April2021

2

Foreword

Theenergytransitionneededtomitigateclimatechangepresentschallengesofunparalleled

scaleandcomplexity.Manyofthetechnologiesneededtocutgreenhousegasemissionsare

notyetfullymature,whilstthetimewindowavailableforbringingthemtomarketisclosing

rapidly.Inthiscontext,reliableintelligenceontrendsinlow-carbonenergy(LCE)innovation

iscrucialforsupportingsoundbusinessandpolicydecisions.

AsthepatentofficeforEurope,theEPOisideallypositionedtofirstdetectandanalysesuch

trends.Becausepatentapplicationsaretypicallyfiledlongbeforeproductsappearonthe

market,theyprovideearlyinformationonforthcomingtechnologies.Thankstoourunique

accesstotheworld'slargestcollectionofpatentandnon-patentliterature,theEPOisableto

exploitthatinformationtoproducecutting-edgebusinessintelligence.

Ourpatentclassificationschemeforclimatechangemitigationandadaptationtechnologiesis

testamenttoourcommitmenttofulfilthatrole.Withmillionsofpatentdocumentsclassified

acrossawidevarietyofclimatechangemitigationtechnologies,ithasbecomeawidely-used

standardformonitoringprogressingreentechnologiesacrosstheworld.

OurpartnershipwiththeInternationalEnergyAgency(IEA)makesitpossibletofurther

exploittheseresources.BycombiningtheEPO’sadvancedpatentknowledgewiththeIEA’s

unparalleledtechnicalandeconomicexpertiseinenergy,weaimtosupportdecision-making

inthepublicandprivatesectorswiththebestpossibleinformationontechnologytrendsin

thisfield.

Ournewjointstudyembracesthebroadlandscapeoflow-carbonenergytechnologies.

ItreliesforthatpurposeontheEPO’sdedicatedpatentclassificationschemeforsuch

technologies,alongwithnewpatentdataonfossilfueltechnologiesthathavebeen

developedasabenchmarkforthisstudy.

Theresultsrevealencouragingtrendsandinterestingenergytransitionpatternsacross

countriesandindustrysectors.However,ourreportalsohighlightstheneedtofurther

accelerateinnovationforthetechnologies–somestillemerging–thatarepoisedtoplayan

instrumentalroleintheenergytransitionofthenext2-3decades.Bygivingdecision-makers

unparalleleddataandanalysesaboutinnovativesolutionsinlow-carbonenergy,Iam

confidentthatthisreportwillhelptoguidethemindrivingthevitalenergytransition.

AntónioCampinos

President,EuropeanPatentOffice

3

Foreword

InMarchofthisyeartopinternationalenergyandclimateleaderstookpartintheIEA-COP26NetZeroSummit,akeymilestoneinacceleratinginternationalcollaborationtowardcleanenergytransitions.

Manyofthegovernmentspresent,whorepresentedmorethan80%ofglobalGDPandthemajorityofglobalenergyuseandgreenhousegasemissions,highlightedtheurgentneedtoincreasethepaceandscaleofadoptinglow-carbontechnologies,andemphasisedthatsignificantlygreaterprivateandpublicinvestmentisneededtoquicklyharnesscommercially-availabletechnologies,andtoidentifyanddevelopbreakthroughtechnologies.

Thisreportexaminesthelandscapeoflow-carbonenergytechnologiesandcoversthepast,presentandfutureofcleanenergyinnovation.Recentdevelopmentsprovidewelcomegroundsforoptimism.Afteraslumpinpatentingactivityduringthelastdecade,wehavenowseenthreeyearsofgrowthinlow-carbonenergy(LCE)patentinginmanykeyemergingandcross-cuttingtechnologies.

Toprovidecontexttothetrendsandpatternsinlow-carbonenergyinnovation,thereportusesnewapproachestoidentifypatentsrelatedtofossilfueltechnologies.TheresultsshowfossilfuelpatentsdecliningasLCEpatentsgrow.Itisclearthattoreachoursharedobjectiveofnetzeroemissions,furthereffortsareurgentlyrequiredtotakethisresurgenceofcleanenergyinnovationtoanewandtransformationallevel.Policy-makerscandrawonthisreporttoidentifyactionsthatwillhelpbringnewtechnologiestomarketsandconsumersallovertheworld.

Thereport’sfindingsaretheresultofagrowingpartnershipbetweentheIEAandtheEuropeanPatentOffice(EPO)thatwillhelpustrackprogressgoingforward.Itisthesecondoutputfollowingourfirstcollaborationwhichfocusedontheimportantareaofenergystorage.

Dr.FatihBirol

ExecutiveDirector,InternationalEnergyAgency

4

Contents

Forewords2

Listoftablesandfigures

6

Listofabbreviations

8

Executivesummary9

1.

Introduction

21

1.1

Aimofthestudy

23

1.2

Structureofthereport

24

2.

Technologyroadmaptoadecarbonisedeconomy

25

2.1

Beyondtheheadlinetrend:capturingthediversedynamicsofenergyinnovationinthedata

26

2.2

Therisingimportanceofend-useandenablingtechnologiesforcleanenergy

29

2.3

End-useandenablingtechnologiesareacceleratingnewtypesofinnovation

30

3.

Maintechnologytrends

34

3.1

Trendsinenergysupplytechnologies

35

3.2

Trendsinend-usetechnologies

36

3.3

Trendsinenablingtechnologies

37

4.

ProfileofapplicantsinLCEtechnologies

43

4.1

Universitiesandpublicresearchorganisations

44

4.2

TopapplicantsinLCEtechnologies

49

5.

Geographicaldistributionoflow-carbonenergyinnovation

54

5.1.

Globalinnovationcentres

55

5.1.1

FocusonEurope

60

5

Annex

64

Annex1CartographyofLCEtechnologies

65

Annex2Cartographyoffossilfueltechnologies

66

Annex3Patentmetrics67

Annex4Clusteranalysis68

References69

6

Backtocontents

Listoftablesandfigures

Tables

Table2.1Overviewofthecartographyandhowitmapstokeytechnologygaps27

Table3.1DistributionofglobalIPFsinPVtechnologybetweentheworldmainregions,

2010-201937

Table3.2ShareofIPFsinenablingtechnologiesoverlappingwithotherfields,

2010-201940

Table3.3DistributionofglobalIPFsinhydrogenbetweentheworldmainregions,

2010-201942

Table4.1Top15universitiesandPROsinLCEtechnologies,2000-201946

Table4.2Topglobalclustersinenablingtechnologies,2000-201848

Table4.3LCEtechnologyprofilesoftop15applicants,2000-201950

Table5.1Specialisation(RTA)ofglobalinnovationcentresbyLCEtechnologyfields,

2010-201957

Table5.2Specialisation(RTA)oftop10EPCcountriesbyLCEtechnologyfields,

2010-201961

Figures

FigureE1GlobalgrowthofIPFsinlow-carbonenergytechnologiesversusall

technologies,2000-2019(base100in2000)10

FigureE2GlobalgrowthofIPFsincleanenergysupply,enablingand

end-usetechnologies,2000-201911

FigureE3OverlapsofpatentingactivityinLCEenablingtechnologieswithenergy

supplyandend-usetechnologiesinvarioussectors,2000-201912

FigureE4GlobalgrowthofIPFsinelectricvehiclesversusotherLCEtechnologiesfor

roadtransportation,2000-201913

FigureE5Top15applicantsinLCEtechnologies,2000-201914

FigureE6EmergingtechnologiesinPVcellsandmountings,2015-201915

FigureE7ShareofIPFsinfuelcellsandlow-carbonhydrogenproduction,2010-201916

FigureE8ShareofIPFsoriginatingfromuniversitiesandPROsinLCEtechnologyfields,

2000-201917

FigureE9Mainrevealedtechnologyadvantagesofglobalinnovationcentres18

FigureE10Top10fieldsforshareofIPFsstemmingfrominternationalcollaboration(with

top5pairsofcollaboratingcountrieshighlightedineachfield),2000-201919

Figure1.1GlobalenergysectorCO2emissionsreductionsbycurrenttechnology

readinesscategoryintheIEASustainableDevelopmentScenariorelative

totheStatedPoliciesScenario22

Figure2.1GlobalgrowthofIPFsinlow-carbonenergytechnologiesversusall

technologies,2000-201926

Figure2.2HistoricalandprojectedCO2emissionsfromexistingenergyinfrastructure

andemissionspathwaysinIEAclimatechangemitigationscenarios28

Figure2.3GlobalgrowthofIPFsinLCEsupply,enablingandend-usetechnologies,

2000-201929

Figure2.4Low-carbontechnologiesbyunitsizeandaverageannualinstallationsin

theSustainableDevelopmentScenario31

Figure2.5Capitalcostsforselectedenergytechnologiesin2040relativeto201932

Figure3.1GrowthofIPFsinenergysupplytechnologies,2000-201935

Figure3.2IPFsinorganicPVcellsversusothertypesofPVcells,2010-201936

Backtocontents

7

Figure3.3Innovationtrendsinmountingandtracking37

Figure3.4GrowthofIPFsinend-usetechnologies,2000-201938

Figure3.5GrowthofIPFsinenablingtechnologies,2000-201939

Figure3.6IPFsinhydrogen-relatedtechnologies,2000-201941

Figure4.1EstimatedtotalpublicenergyR&D,includingdemonstrationbudgetfor

IEAmembergovernments,1974-201944

Figure4.2ShareofIPFsoriginatingfromuniversitiesandPROsinLCEtechnologyfields,

2000-201945

Figure4.3GeographicaloriginsofIPFsrelatedtoLCEtechnologies,2000-201847

Figure4.4Top15applicantsinLCEtechnologies,2000-201949

Figure4.5GlobalgrowthofIPFsinelectricvehiclesversusotherLCEtechnologiesfor

roadtransportation,2000-201952

Figure4.6Top10applicantsinLCEroadtransporttechnologies,2000-201953

Figure5.1GrowthofIPFsinLCEtechnologiesbyglobalinnovationcentres,2000-201955

Figure5.2Long-termtrendofpatentinginfossilfuelstechnologies,1945-201958

Figure5.3GrowthofIPFsinfossilfuelversusLCEsupplytechnologiesbyglobal

innovationcentres,2000-201959

Figure5.4GrowthofIPFsinLCEtechnologiesinEuropeancountries,2000-201960

Figure5.5ShareofIPFsinleadinginnovationcentresthatareco-inventedwithother

countries,2000-201962

Figure5.6Top10fieldsforshareofIPFsstemmingfrominternationalcollaboration(with

top5pairsofcollaboratingcountrieshighlightedineachfield),2000-201963

8

Backtocontents

Listofabbreviations

Countrycodes

BOS

CCUS

CO

2

CSP

EPC

EPO

EV

GHG

ICT

IEA

IPF

LCE

LED

Li-ion

OCGTPATSTAT

PEM

PRO

PV

R&D

RTA

SDS

SMR

TRL

Y02

Balance-of-system

Carboncapture,utilisationandstorage

Carbondioxide

Concentratingsolarpower

EuropeanPatentConvention

EuropeanPatentOffice

Electricvehicles

Greenhousegas

Informationandcommunicationstechnology

InternationalEnergyAgency

Internationalpatentfamilies

Low-carbonenergy

Light-emittingdiode

Lithium-ion

Open-cyclegasturbine

EPO'sworldwidepatentstatisticaldatabase

Polymerelectrolytemembrane

Publicresearchorganisations

Photovoltaics

Researchanddevelopment

Revealedtechnologicaladvantage

Sustainabledevelopmentscenario

Smallmodularreactor

Technologyreadinesslevel

EPO'sclassificationschemeforclimatemitigation

technologies(seeBox1)

AT

BE

CA

CH

CN

DE

DK

ES

FR

IL

IN

IT

JP

KR

NL

RU

SE

UK

US

Austria

Belgium

Canada

Switzerland

People'sRepublicofChinaGermany

Denmark

Spain

France

Israel*

India

Italy

Japan

RepublicofKorea

Netherlands

Russia

Sweden

UnitedKingdomUnitedStatesofAmerica

*ThestatisticaldataforIsraelaresuppliedbyandundertheresponsibilityoftherelevantIsraeliauthorities.TheuseofsuchdatabytheOECDiswithoutprejudicetothestatusoftheGolanHeights,EastJerusalemandIsraelisettlementsintheWestBankunderthetermsofinternationallaw.

9

Backtocontents

Executivesummary

Energyinnovationisaninescapableconditionofclimatechangemitigation,occurringagainstabackdropofrisingpolicyambitionandachangingtechnologylandscape

Overthelastyear,manyoftheplanet'slargesteconomiesandcompanieshavecommittedtoeliminatingtheircontributiontogreenhousegasemissionsbythemiddleofthiscentury,orsoonthereafter.Thishasfocusedattentiononaplannednear-totaltransformationoftheenergysysteminaslittleasthreedecades.

Aimedatdecision-makersinboththeprivateandpublicsectors,thisreportisauniquesourceofintelligenceontheinnovationtrendsacrosstheenergysystem,andLCEtechnologiesinparticular.DrawingontheEPO'sdedicatedschemeforpatentinformationonclimatechangemitigation,thedatapresentedinthereportshowsthelatesttrendsinhigh-valueinventionsforwhichpatentshavebeenfiledinmorethanoneofficebycountinginternationalpatentfamilies(IPFs1).HighlightingtheLCEfieldsthataregatheringmomentumandthecrossfertilisationtakingplaceprovidesaguideforpolicyandbusinessdecision-makerstodirectresourcestowardsaneffectiveenergytransition.

However,theenergysectorwillonlyreachnet-zeroemissions

ifthereisasignificantandconcertedglobalpushtoaccelerate

innovation(IEA,2020a).Technologiesstillcurrentlyatthe

prototypeordemonstrationphaserepresentaround35%of

thecumul

ativeCO2emis

sionsreductionsneededtoshifttoa

sustainablepathconsistentwithnet-zeroemissionsby2070.

ThesuccessfulexamplesofLEDsorlithium-ionbatteries,

whichtookbetweentenand30yearstogofromthefirst

prototypetothemassmarket,mustsetthebenchmarkfor

thearrayofenergytechnologiesneededtoachievenet-zero

emissions.

Trendsinlow-carbonenergy(LCE)innovationhavenever

beenmoreimportanttopolicymaking.Notonlydoclimate

changegoalsdemandurgentandinformedstrategic

decisionsaboutinnovation,butinvestmentinnew

technologyfieldshastakencentrestageinproposed

recoveryplanstocombattheimpactsoftheCOVID-19

pandemic(IEA,2020b).

Asdescribedinthisreport,cleanenergytransitionsarebeing

builtusinginnovationsthatrepresentadeparturefromthe

typesoftechnologiesdevelopedbytheenergysectorin

previousdecades.Newtechnologiessupportashiftto

greaterrelianceonelectricalpowerinawiderangeof

sectors,withmoreconsumer-orientedsolutionsandmore

distributedresources.Thisisresultinginafocusonsmaller

unitsizesandadifferentsetoftechnologycustomers.These

changesarebringingnewentrantsintotheenergysystems,

increasingthepressuretoinnovateinproductdesignand

raisingtheroleofmanufacturinginnovations,amongother

things.Asthisreportdescribes,thechangingdynamicsof

energyinnovationcanalreadybeseeninpatentingdata.

1EachIPFcoversasingleinventionandincludespatentapplicationsfiledandpublishedatseveralpatentoffices.Itisareliableproxyforinventiveactivitybecauseitprovidesadegreeofcontrolforpatentqualitybyonlyrepresentinginventionsforwhichtheinventorconsidersthevaluesufficienttoseekprotectioninternationally.ThepatenttrenddatapresentedinthisreportrefertonumbersofIPFs.

Backtocontents

10

Afterarapidriseintheperiodto2013,patentingactivityinLCEtechnologiesslumpedbetween2014and2016.However,thelatestdatashowthreeyearsofgrowthinLCE,whichisaparticularlyencouragingtrendwhencontrastedwiththesimultaneousdeclineofpatentinginfossilenergy–afour-yeardeclinethatisunprecedentedsincethesecondWorldWar.

Thenewdriversarenotinenergysupplytechnologies,butrathercontinuedinnovationinend-usesectorsandrisinginnovationincross-cuttingtechnologiessuchasbatteriesandhydrogen.Overall,thecurrentgrowthrateremainsbelowthatwitnessedbefore2013,andanaccelerationinactivitywouldbeneededtomakeupforthelostyears.

Highlight1:From2000to2019,patentingactivitieshavebeenincreasingfasterinlow-carbonenergy(LCE)technologiesthaninfossilfueltechnologies.Afterasignificantdropin2015,thenumberofinternationalpatentfamilies(IPFs)inLCEareashasresumedgrowthsince2017,whilefossilfuelinnovationstartedtodecline.However,theaverageannualgrowthrateofLCEpatentsinrecentyears(3.3%since2017)hasbeenconsiderablylowerthanthe12.5%averagegrowthintheperiod2000-2013.

FigureE1

GlobalgrowthofIPFsinlow-carbonenergytechnologiesversusalltechnologies,2000-2019(base100in2000)

450%

400%

350%

300%

250%

200%

150%

100%

50%

0%

20002001200220032004200520062007200820092010201120122013201420152016201720182019

Low-carbonenergy

Fossilfuels

Alltechnologies

Source:EuropeanPatentOffice

11

Backtocontents

Highlight2:Highactivityinfuel-switchingandenergy

efficiencytechnologiesinend-usesectorshasdrivensteady

LCEpatentingsince2012.Theseareasrepresentastable

60%ofallLCEpatentsoverthepastfiveyears,reflectingthe

massivechallengeofreininginenergydemandacrossthe

economy.Despitedrawingattention,renewables(likewind,

solar,geothermalorhydroelectricpower)andotherLCE

supplytechnologiesrepresentedonly17%ofallLCEIPFsin

2019.Patentinginthesefieldshasbeenfallingsince2012,

incontrastwiththefastgrowthobservedintheprevious

decade.ThekeydriverofLCEgrowthsince2017hasinstead

beeninnovationincross-cuttingtechnologiessuchas

batteries,hydrogenandsmartgrids,aswellas

carbon-capture,utilisationandstorage(CCUS),that

serveaskeyenablersoftheenergytransition.Theshare

ofthesetechnologiesincreasedfrom27%ofallLCEIPFs

in2000to34%in2019.

FigureE2

GlobalgrowthofIPFsincleanenergysupply,enablingandend-usetechnologies,2000-2019

25000

20000

15000

19995

10000

11381

5000

5528

0

20002001200220032004200520062007200820092010201120122013201420152016201720182019

End-useEnergysupplyEnabling

Source:EuropeanPatentOffice

Backtocontents

12

Highlight3:Cross-cuttingtechnologiesareplayinganincreasinglyimportantroleasenablersforotherLCEtechnologies.Thesearehelpingtheenergysystemtobecomemoreflexibleandexploitsynergiesbetweenrelatedsectors.Thisisillustratedbytheirincreasingoverlapwithpatentingactivitiesinenergysupplyandend-usetechnologies.Aselectricitysupplybecomesmorevariable,theflexibilityofthepowergridandend-usetechnologiesisgrowinginimportance,includingtheirabilitytocommunicatewithoneanother.Forexample,digitaltechnologiesthatcanadjustthepatternsofconsumerenergydemandtotakeadvantageofenergysupplieswhentheyarecheapestaresettobecomekeyelementsoftheoverallenergysystem.

Today,areaslikeelectricitystorageandsmartgridsarecreatingmarketvaluebysupportinghigherlevelsofvariablerenewablepowerwithoutcompromisingelectricitynetworkresilience.Infuture,innovationsthathelpcompaniesofferconsumerscontractsforthequalityoftheirheating,coolingandvehiclecharging–"energy-as-a-service"–whilealsogettingpaidbyenergysuppliersforthedemand-sideflexibilitytheycanguaranteewillfurtherexpandtheseoverlaps.

FigureE3

OverlapsofpatentingactivityinLCEenablingtechnologieswithenergysupplyandend-usetechnologiesinvarioussectors,2000-2019.

Batteries

EV

Smartgrid

Building

CCUS

Chemical&oil

Hydrogen

Consumerproducts

EV

EV

Combustion

Other

road

Chemical

&oil

Building

Consumerproducts

SolarPV

SolarPV

SolarPV

Wind

Fuelfromwaste

Bioenergy

Fuelfromwaste

Building Metal&minerals

Building

Otherproduction

Combustion

Consumer

products

Otherproduction

Agriculture

ICT

Otherproduction

Otherroad

Source:EuropeanPatentOffice

13

Backtocontents

Electricvehiclesaredrivingthedominanceofend-use

technologiesinlow-carbonenergypatenting

Highlight4:Amongtheend-usesectors,thefast

developmentofelectricvehicles(EVs)andassociated

infrastructurehasbeenthemostpowerfuldriverof

innovationinLCEtechnologiesoverthepastdecade.Thisis

visiblebothinend-usetechnologies,wherethenumberofIPFs

inelectricvehiclesovertookothercleanenergytechnologies

forroadvehicles2asof2011,andinthefastriseofinnovation

inbatteriesasenablingtechnologies.Inaddition,thereare

significantpatentingactivitiesinthe"hard-to-abate"sectors

(e.g.metals),withinnovationinbothenergyefficiencyand

directabatement(CCUS).

FigureE4

GlobalgrowthofIPFsinelectricvehiclesversusotherLCEtechnologiesforroadtransportation,2000-2019

5000

4500

4579

4000

3500

3000

3000

2500

2000

1500

1000

500

0

20002001200220032004200520062007200820092010201120122013201420152016201720182019

Road/electricRoad/otherLCE

Source:EuropeanPatentOffice

2Includingtechnologiesaimedatmoreefficientcombustionengines,aswellas

improvedaerodynamics,weightreduction,ormoreenergy-efficientcomponents

andsubsystems.

Backtocontents

14

Highlight5:Thelistofthetop15applicantsinLCE

technologiesprovidesastrikingillustrationofthe

expectationsforcontinuedgrowthinEVdeploymentand

thecommercialpressurethatisdrivingmajormanufacturers

tocompeteforapositioninthischanginglandscapefor

transport.Therankingincludessixautomotivecompanies

(Toyota,GM,Ford,Honda,VW,Hyundai)andsixoftheirmain

batterysuppliers(Samsung,Panasonic,LG,RobertBosch,

Hitachi,Toshiba).TheremainingthreetopapplicantsareGE

andSiemens–twoconglomeratesdirectlyinvolvedinthe

energysector–andUScompanyRaytheo

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论