船型优化设计与高效推进系统研究及应用_第1页
船型优化设计与高效推进系统研究及应用_第2页
船型优化设计与高效推进系统研究及应用_第3页
船型优化设计与高效推进系统研究及应用_第4页
船型优化设计与高效推进系统研究及应用_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

摘要:本技术是基于江海直达船型线型优化和高效推进系统的应用,通过优化,采用直首型船体线型减少阻力,与机桨合理匹配,加装水动力节能装置,提高螺旋桨的推进效率。通过项目的实施,综合22000DWT江海直达船阻力和推进性能,相比旧船型达到了预期目标,减少了燃油消耗,降低了二氧化碳排放,降低了船舶主机故障率,减少了船舶噪声和振动,改善了船员生活环境。经过推广使用,公司营运成本明显降低,提高了现有船舶的市场竞争能力,同时实现了构建“绿色船舶”的重要目标。关键词:船舶工程;船舶设计;船型优化;推进系统;节能降耗1.技术概况在建设舟山江海联运服务中心的政策支持下,浙江新一海海运有限公司打造了“江海直达”船型,2018年4月建造的“江海直达1”轮投入营运。该船是一艘绿色环保的新船型,该项目研究的技术是基于江海直达船型线型优化和高效推进系统的应用。设计方案是优化船体线型,采用直首型减少阻力,与机桨合理匹配,加装水动力节能装置,提高螺旋桨的推进效率,达到节能减排、低碳环保的目的。2.技术原理和内容(1)优化船首线型,减少波浪失速,提高抗风浪能力船舶线型优化主要包括船首优化、尾部线型优化及整船阻力性能优化。针对该船的特点开展了线型优化研究,同时针对兴波和尾部压力分布进行优化,优化线型与初始线型的主尺度及静水力参数对比取最佳船体线型结构。首部线型优化,是将原型船的球鼻首改为直壁船首,开展优化线型在波浪中的航速评估,在典型海况下船舶航速大于静水中的航速,表明首部线型改为直柱型船首后,能在风浪中达到更高的航速,提高风浪中航行的安全性和经济性。初始线型与优化线型的主尺度和静水力情况如表1所示,各站横剖面及其面积对比如图1所示。表1初始线型与优化线型的主尺度和静水力表图1初始线型与优化线型各站横剖面及其面积对比在船体首部,对首部设计吃水线附近的线型进行优化,改善首部兴波和侧面波系。使首部压力更加均匀,尾部正压区范围面积更大,低压区范围面积更小,这对降低阻力有显著效果,使得线型总阻力比初始化线型明显降低。船舶在波浪中推进效率的求取方法采用ISO15016推荐的方法,取轴系效率0.98,海况储备15%,该船螺旋桨的收到功率为:PD=3700×0.85×0.98/1.15=2680kW,此时该船在静水中的航速为12.0kn,典型海况下的航速为9.67kn,失速系数为0.805,在同类型船舶中性能较为优秀,表明船首优化后,该船在波浪中航行性能提升,能在风浪中达到更高的航速,大大提高风浪中航行的安全性和经济性。典型海况下的波浪增阻如表2所示。表2典型海况下的波浪增阻(2)优化尾部,降低振动,提高运营舒适性在船体尾部,优化线型将尾封板高度下压,4米水线以下的线型均往里收缩,另外尾部设计对水线附近的线型也进行了优化,以改善尾部兴波和压力分布。初始的伴流因线型原因导致桨盘面伴流不佳,特别是在尾轴侧上方的伴流过大,不利于螺旋桨推进,并有可能造成激振。改型方案降低了桨盘面侧上方的伴流,使伴流在桨盘面的周向分布更加均匀。通过优化尾部线型改善伴流均匀性,大大减小了尾部振动,同时提高了螺旋桨的推进效率。(3)优化整船线型,降低阻力,提升航速通过对初始线型和优化线型阻力性能数值评估,得到静水总阻力系数结果和自由面云图对比分析,结果见表3。优化线型1的模型总阻力系数较初始线型降低约4.224%,优化线型2的模型总阻力系数较初始线型降低约6.357%,即该船阻力。优化后采用直壁型船首和球尾等低阻力线型,实现船机桨最佳匹配。表3模型总阻力系数CFD计算结果比较(4)配备高效推进系统、加装水动力节能装置高效螺旋桨基于普通图谱螺旋桨,结构上增加了导流板,具有引导水流的作用;高效螺旋桨排出的水流,更趋向圆柱状,而现有的螺旋桨排出的水流是呈圆锥状的。高效螺旋桨和消涡鳍一体化设计需要获取船体在螺旋桨处的伴流场,作为理论设计的输入条件。采用最先进的粘/势耦合的推进器设计理论进行高效螺旋桨和消涡鳍的一体化设计。该方法首先根据所提供的船体型值,基于CFD方法对该船螺旋桨盘面处的伴流场进行分析计算,将CFD计算得到的船体伴流场作为高效螺旋桨和消涡鳍理论设计的来流条件。在理论设计过程中采取考虑消涡鳍的最佳环量分布,适当提高螺旋桨根部环量,充分发挥消涡鳍的节能效果,通过桨鳍之间的相互诱导速度来考虑螺旋桨和消涡鳍的相互影响。同时考虑高效桨叶剖面及适伴流的最佳侧斜和纵倾分布设计以达到最佳效率。采用粘流CFD计算得到的船尾伴流场作为螺旋桨势流设计的进流输入。通过最佳环量分布及高效桨叶剖面设计以达到最佳效率。设计得到的高效螺旋桨主参数见表4。图2为高效桨三维造型图。经评估,高效螺旋桨相比常规图谱桨,效率能提高约3%。表4“江海直达1”轮高效螺旋桨主参数图2常规图谱桨和高效螺旋桨三维造型在高效桨上加装消涡鳍,消涡鳍是一种安装在螺旋桨尾端面用以消除螺旋桨毂涡能量损失的船舶水动力节能装置。与常规将军帽相比,消涡鳍仅多了些小叶片而已,结构简单,但却具有3%~5%左右的节能效果。利用CFD技术计算常规导流帽和消涡鳍的敞水性能,在设计点J=0.5附近,加装消涡鳍后,敞水效率可提高约2.6%。为验证“江海直达”船线型优化和高效桨鳍设计结果,在702所拖曳水池开展了快速性模型试验,主要包括螺旋桨敞水试验、设计和压载吃水下船模阻力和自航试验。经模型试验验证,在螺旋桨功率达到2680kW时,最终优化线型在设计吃水下,裸船体的航速达到11.91kn,加装节能装置后航速达到12.01kn,节能约12%。表5消涡鳍主参数图3高效桨+消涡鳍三维造型

“江海直达1”轮通过线型优化和高效桨加消涡鳍推进系统应用后,设计吃水和压载吃水工况下,船模阻力和自航试验的预报最终航速如表6所示。表6实船航速预报结果3.技术应用情况“江海直达1”轮于2018年4月10日首航马鞍山,社会各界关注度都非常高。“江海直达1”轮除首航马鞍山外,其余航次全部营运于宁波舟山港至张家港航线,为钢铁矿石运输配套服务。2018年4月至2019年7月31日,共计完成64个重载航次,完成货运量135.82万吨,货物周转量5.18亿吨公里。营运至今,该轮实测油耗与同类型海船油耗比较情况如表7、表8所示。综合营运实测,“江海直达1”轮主机转速120转左右,船舶平均航速约11.5kn,日平均油耗稳定在7.8吨,跟同类型海船相比节油12%。相比同功率主机的船舶,未加装水动力节能装置及未使用普通流线型半悬挂舵,相同航速和相同工况下,油耗约每天

8.9吨。表72018年度船舶燃油消耗对比表82019年度船舶燃油消耗对比表4.节能降碳效益测算评价4.1经济效益在实船建造中线型优化设计、试验费加上设备投入总计约80万,“江海直达”船型的线型优化和高效桨加消涡鳍的一体化应用后,跟同功率主机的海船相比,每天可以节约燃油约1.1吨,按照年航行125天计算,每年节省燃油137.5吨,按照燃油平均价格每吨4000.0元计算,每年节省燃油支出55万元。并且船机桨匹配后,主机功率能有效发挥;燃油燃烧比较充分,主机缸套结碳少,故障率相对较低,从主机维护成本方面估算,节省费用约10万每年。综合统计约1.5年可以收回该项目的投资成本。4.2社会效益该项目的社会效益首先体现在能够大大减少船舶燃油燃烧释放硫氧化物、碳氧化物和颗粒物等大气污染物排放;其次,减弱船舶主机震动、噪音等物理污染,改善船员工作、生活环境。“江海直达1”轮主机功率3700kW,额定转速140rpm,在主机经济转速120rpm时,主机年平均油耗比同功率主机海船能节省燃油137.5吨,按国标《综合能耗计算通则》(GB/T2589)与《省级温室气体清单编制指南》计算,消耗1kg燃油排放二氧化碳3.1705kg,该项目实施后,每年可减少二氧化碳排放435.9吨。5.结论通过该项目的实施,综合22000DW

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论