高中物理教学论文:斜抛运动的极值问题例析_第1页
高中物理教学论文:斜抛运动的极值问题例析_第2页
高中物理教学论文:斜抛运动的极值问题例析_第3页
高中物理教学论文:斜抛运动的极值问题例析_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1斜抛运动的极值问题例析斜抛运动由于其速度的不确定性,使其在运动过程中派生出许多的极值问题,比如射程和运动的对称性是斜抛运动常见的问题。而物体在不同平面的斜抛其特点不同,对应的极值也各不同,现就物体在几种平面上斜抛运动时的极值问题进行分类说明。(一)在水平面上的斜抛运动的极值问题例题 1:在水平地面上以速度 v 抛出一小球,v 的方向与水平面的夹角为 ,试确定 为多大时,小球的射程最远?解:建立如图一所示的坐标系,把小球的运动看作是竖直方向的竖直上抛运动和水平方向的匀速直线运动的合运动。则两速度的分量为:vxvsinvyvcos小球在空中运动的时间为:t2v y/g2vcos/g则小球的射程 Xv xtv sin2vcos/gv 2sin2/g由上式可知:当 45 o 时,射程具有最大值。最大射程为:Xv 2/g即要使物体以一定的速度在平面上有最大的射程的条件是:物体的抛射角为 45o。(二)斜抛到上斜面的斜抛运动的极值问题例题 2:如图二所示,倾角为 的斜面光滑,自斜面上某处以速度 v 沿与斜面夹角为的方向向斜面上抛出一质点,设质点与斜面间的碰撞没有动能损失,斜面有足够长,要求质点最后仍能回到原出发点, 应满足什么条件?解析:整个运动过程中,质点的机械能守恒,显然,若质点能回到原出发点,则它沿斜面向上的运动和向下的运动应该是互相对称的,亦即质点沿斜面方向运动到其能达到的最高点后,它应沿“原路”返回。这样,有两种情况都能满足这一要求。一是质点最后一次与斜面相碰时,其速度方向刚好与斜面垂直,则其反弹起来的速度必与其碰前的速度大小相等而方向相反,这样,质点此后的运动将把其上升过程的运动“反演 ”一次,可回到原出发点。二是质点最后一次与斜面相碰后,其反弹起来的速度恰沿竖直向上的方向,则质点弹起后作竖直上抛运动,当质点达到竖直上抛的顶点后,接着便会将此前的运动“反演”,也会回到原出发点。由于运动的对称性,为求解的方便,我们可按上述两种情况求出质点沿斜面下降中各次与斜面相碰的速度,而将此速度逆转,即为满足题目要求的抛出速度。解:(1)建立如图三所示的坐标系,设质点沿垂直于斜面的方向(图中y 方向)以某一初速度 v0 抛出,在质点再次与斜面相碰前,质点在空中运动时其加速度的两分量分别为:AvxyB图一v图二2ax gsinay gcos在某一时刻 t 时,质点的速度两分量为:vy v0 gcostvx gsint时刻 t 时,质点的位置坐标为:x gsint2/2y v0t gcost2/2由上式中令 y 0 得质点由出发至第一次与斜面相碰所历时间为:T 2v0/gcos此时质点的两速度分量为:vy v0vx gsinT质点由斜面反弹起来时,其垂直于斜面方向的速度大小是 v0,可见此后质点每两次与斜面相碰的时间间隔为 T,则质点第 n 次与斜面相碰时的速度分量分别为:vy v0vx gsinnT令此时速度方向与斜面间的夹角为 ,则有:tg vy/vx v0/(ngsin2v0/gcos) ctg/2n . (n=1、2) (2)设质点由空中自由下落到斜面上,与斜面相碰时速度为 v0,仍在图中所示的坐标系中,同上分析可得,质点连续两次与斜面相碰的时间间隔为:T 2v0cos/gcos 2v0/g此后,质点第 n 次与斜面相碰时其速度分量为:vx v0sin gsin(n 1)Tvy v0cos由上三式解得质点第 n 次与斜面相碰时,速度方向与斜面间的夹角 应满足:tg vy/vx v0ctg/【 v0 2v0(n 1)】 ctg/(2n-1). (n=1、 2) (3)由上分析可知,若将运动情况逆转,则依式或式确定的 角方向抛出质点,则质点将可沿原路返回,综合(1) (2)两种情况,可知在斜面上抛出质点的速度方向与斜面间的夹角 只要满足:tg ctg/k. (k 1、 2)时,质点便能返回原出发点。(三)斜抛到下斜面的斜抛运动的极值问题例题 3:如图四所示,从倾角为 的斜面上以与斜面成 的夹角以速度 v 抛出一个小球,最后小球能落回到斜面上,求小球离开斜面的最大距离?解:建立如图四所示的坐标系,把小球的运动看作是垂直于斜面向上的匀减速直线运动和平行斜面向下的匀加速直线运动的合运动。则速度在 y 方向的分量为:y vsin重力加速度在 y 方向的分量为:gy gcosxy图三vxyg图四3则小球在 y 方向上的最大高度为离开斜面的最大距离:由 vy2 2gyh 可得:h v2sin2/2gcos例题四:在离水平地面高为 h 的地方,以一定的速率 v0 抛出一石子,不计空气阻力,试求应以多大的仰角将石子抛出,才可使其水平射程最远?解:设石子落地时速度大小为 v,则根据机械能守恒定律有:mv02/2 mgh mv2/2可得:v (v02 2gh)1/2可见不管沿何方向抛出石子,石子落地速度的大小都为同一个确定的值。又设石子在空中运动的时间为 t,则根据运动学公式应有:v v0 gtv、 v0、 gt 三个矢量组成一个封闭三角形,如图五所示,其中 gt 沿竖直向下的方向,表示 v0 与水平方向的夹角。由抛体运动公式可知石子的水平射程为:S v0cosgt/2比较以上两式可得:x 2S/g显然,要 x 最大。则需 S 最大。由于 v0 和 v 的大小都是确定的,故当两者互相垂直时,它们所围成的三角形面积最大,此时角 应满足:tg v0/v v0/(v02 2gh)1/2即当抛射仰角 arctg v0/(v02 2gh)1/2 时,石子的水平射程最远。(四)斜抛到弧面上的斜抛运动的极值问题例题五:一个半径为 R 的光滑半球形台,固定在水平面上,问在台下的水平面上应在何处以多大的速度朝何方向抛出一小球(可视为质点) ,才可使小球最后恰好静止在半球台的顶点上?解析:抛出小球,为斜上抛运动,且小球碰到球台面后,还会沿球台面上滑一段才到达球台顶上。若直接根据斜上抛等规律求解,则本题很复杂,甚至无从下手。但若以运动的对称性来考虑,设想小球原来就静止在他球台顶上,由于受到一个极小的扰动而由静止开始自台顶滑下,则此下落过程乃是题目所求小球上升的逆过程。由过程的对称关系,故如能求出上述小球落地时的速度,则将其方向逆转,即为本题所求的抛出速度了。解:如图六所示,设小球自台顶最高点 A 处由静止开始下滑,当它沿台面下滑的弧段所对的圆心角为 时,由机械能守恒关系可得此时小球的速度大小为:v 【2gR (1 cos) 】 1/2设小球质量为 m,此时球台面对小球的支持力为 N,由于小球沿球台面的运动为半径为 R 的圆周运动,其向心力为重力沿半径方向的分力与台面支持力的合力,即:mgcos N mv2/R所以 N mgcos 2mgR( 1 cos) /R 3mgcos 2mgvv0gt图五Axy图六4故当 cos 2/3 时, N 0设 o arccos2/3, 则当 o 离开斜面作斜下抛运动。现在小球运动竖直平面内建立如图六所示的直角坐标系,其 x 轴沿水平方向,y 轴沿竖直向下的方向,坐标原点在小球刚离开球台面的位置,则小球在此坐标原点时速度大小为:v0 【2gR (1 coso) 】 1/2( 2gR/3) 1/2此时 v0 的两分量大小为:v0x v0coso2(2gR/3) 1/2/3v0y v0sino(10gR/3) 1/2/3小球离开球台面后作斜下抛运动,其下落高度为:h R(1cos o)R /3设小球离开球台面后运动到地面的时间为 t,则由斜下抛运动规律有:h v0yt gt2/2由以上两式联立解二次方程得(舍去负根):t 【(46/3) 1/2(10/3) 1/2)】(R/g )1/2/3则斜下抛小球在水平方向前进的距离为:x v0xt4(23 1/25 1/2)R/27故得小球在水平面上的落点与球台中心的距离为:L x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论