




已阅读5页,还剩60页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
冷镦(挤压)成型工艺 主讲人:程从志 n 紧固件成型工艺中,冷镦(挤)技术是一种主要加工工艺。冷镦(挤 )属于金属压力加工范畴。在生产中,在常温状态下,对金属施加外 力,使金属在预定的模具内成形,这种方法通常叫冷镦。实际上,任 何紧固件的成形,不单是冷镦一种变形方式能实现的,它在冷镦过程 中,除了镦粗变形外,还伴随有正、反挤压、复合挤压、冲切、辗压 等多种变形方式。因此,生产中对冷镦的叫法,只是一种习惯性叫法 ,更确切地说,应该叫做冷镦(挤)。冷镦(挤)的优点很多,它适 用于紧固件的大批量生产。它的主要优点概括为以下几个方面: n a钢材利用率高。冷镦(挤)是一种少、无切削加工方法,如加工 杆类的六角头螺栓、圆柱头内六角螺钉,采用切削加工方法,钢材利 用率仅在 25% 35%,而用冷镦(挤)方法,它的利用率可高达 85% 95%,仅是料头、料尾及切六角头边的一些工艺消耗。 n b生产率高。与通用的切削加工相比,冷镦(挤)成型效率要高出 几十倍以上。 n c机械性能好。冷镦(挤)方法加工的零件,由于金属纤维未被切 断,因此强度要比切削加工的优越得多。 n d适于自动化生产。适宜冷镦(挤)方法生产的紧固件(也含一部 分异形件),基本属于对称性零件,适合采用高速自动冷镦机生产, 也是大批量生产的主要方法。 n 总之,冷镦(挤)方法加工紧固件、异形件是一种综合经济效益相当 高的加工方法,是紧固件行业中普遍采用的加工方法,也是一种在国 内、外广为利用、很有发展的先进加工方法。因此,如何充分利用、 提高金属的塑性、掌握金属塑性变形的机理、研制出科学合理的紧固 件冷镦(挤)加工工艺,是本章的目的和宗旨所在。 1 金属变形的基本概念 n 1.1 变形 n 变形是指金属受力(外力、内力)时,在保持自己完整性的条件下, 组成本身的细小微粒的相对位移的总和。 n 1.1.1 变形的种类 n a.弹性变形 n 金属受外力作用发生了变形,当外力去掉后,恢复原来形状和尺寸的 能力,这种变形称为弹性变形。 n 弹性的好坏是通过弹性极限、比例极限来衡量的。 n b.塑性变形 n 金属在外力作用下,产生永久变形(指去掉外力后不能恢复原状的变 形),但金属本身的完整性又不会被破坏的变形,称为塑性变形。 n 塑性的好坏通过伸长率、断面收缩率、屈服极限来表示。 n 1.1.2 塑性的评定方法 n 为了评定金属塑性的好坏,常用一种数值上的指标,称为塑性指标。 塑性指标是以钢材试样开始破坏瞬间的塑性变形量来表示,生产实际 中,通常用以下几种方法: n (1)拉伸试验 n 拉伸试验用伸长率 和断面收缩率 来表示。表示钢材试样在单向拉 伸时的塑性变形能力,是金属材料标准中常用的塑性指标。 和 的 数值由以下公式确定: n (公式 36-1) (公式 36-2) n 式中: L0、 Lk 拉伸试样原始标距、破坏后标距的长度。 n F0、 Fk 拉伸试样原始、破断处的截面积。 n (2)镦粗试验 又称压扁试验 n 它是将试样制成高度 Ho为试样原始直径 Do的 1.5倍的圆柱形,然后在 压力机上进行压扁,直到试样表面出现第 1条肉眼可观察到的裂纹为 止,这时的压缩程度 c为塑性指标。其数值按下式可计算出: n (公式 36-3) n 式中 Ho 圆柱形试样的原始高度。 Hk 试样在压扁中,在侧表 面出现第 1条肉眼可见裂纹时的试样高度。 n (3)扭转试验 n 扭转试验是以试样在扭断机上扭断时的扭转角或扭转圈数来表示的。 生产中最常用的是拉伸试验和镦粗试验。不管哪种试验方法,都是相 对于某种特定的受力状态和变形条件的。由此所得出的塑性指标,只 是相对比较而言,仅说明某种金属在什么样的变形条件下塑性的好坏 。 n 1.1.3 影响金属塑性及变形抗力的主要因素 n 金属的塑性及变形抗力的概念:金属的塑性可理解为在外力作用下, 金属能稳定地改变自己的形状而质点间的联系又不被破坏的能力。并 将金属在变形时反作用于施加外力的工模具的力称为变形抗力。 n 影响金属塑性及变形抗力的主要因素包括以下几个方面: n a金属组织及化学成分对塑性及变形抗力的影响 n 金属组织决定于组成金属的化学成分,其主要元素的晶格类别,杂质 的性质、数量及分布情况。组成元素越少,塑性越好。例如纯铁具有 很高的塑性。碳在铁中呈固熔体也具有很好的塑性,而呈化合物,则 塑性就降低。如化合物 Fe3C实际上是很脆的。一般在钢中其他元素 成分的增加也会降低钢的塑性。 n 钢中随含碳量的增加,则钢的抗力指标( b、 p、 s等)均增高, 而塑性指标( 、 等)均降低。在冷变形时,钢中含碳量每增加 0.1%,其强度极限 s大约增加 6 8 kg/mm2。 n 硫在钢中以硫化铁、硫化锰存在。硫化铁具有脆性,硫化锰在压力加 工过程中变成丝状得到拉长,因而使在与纤维垂直的横向上的机械指 数降低。所以硫在钢中是有害的杂质,含量愈少愈好。 n 磷在钢中使变形抗力提高,塑性降低。含磷高于 0.1% 0.2%的钢具 有冷脆性。一般钢的含磷量控制在百分之零点零几。 n 其他如低熔点杂质在金属基体的分布状态对塑性有很大影响。 n 总之,钢中的化学成分愈复杂,含量愈多,则对钢的抗力及塑性的影 响也就愈大。这正说明某些高合金钢难于进行冷镦(压)加工的原因 。 n b变形速度对塑性及变形抗力的影响 n 变形速度是单位时间内的相对位移体积: n (公式 36-4) n 不应将变形速度与变形工具的运动速度混为一谈,也应将变形速度与 变形体中质点的移动速度在概念上区别开来。 n 一般说来,随着变形速度增加,变形抗力增加,塑性降低。冷变形时 ,变形速度的影响不如热变形时显著,这是由于无硬化消除的过程。 但当变形速度特别大时,塑性变形产生的热(即热效应)不得失散本 身温度升高会提高塑性、减少变形抗力。 n c应力状态对塑性及变形抗力的影响 n 在外力作用下,金属内部产生内力,其单位面积之强度称之为应力。 受力金属处于应力状态下。 n 从变形体内分离出一个微小基元正方体,在所取的正方体上,作用有 未知大小但已知方向的应力,把这种表示点上主应力个数及其符号的 简图叫主应力图。 n 表示金属受力状态的主应力图共有九种,其中四个为三向主应力图, 三个为平面主应力图,两个为单向主应力图,如图 36-1所示。 n 主应力由拉应力引起的为正号,主应力由压应力引起的为负号。 n 在金属压力加工中,最常遇到的是同号及异号的三向主应力图。在异 号三向主应力图中,又以具有两个压应力和一个拉应力的主应力图为 最普遍。 n 同号的三向压应力图中,各方向的压应力均相等时( 1=2=3),并 且,金属内部没有疏松及其它缺陷的条件下,理论上是不可产生塑性 变形的,只有弹性变形产生。 n 不等的三向压应力图包括的变形工艺有:体积模锻、镦粗、闭式冲孔 、正反挤压、板材及型材轧制等。 n 在生产实际中很少迂到三向拉伸应力图,仅在拉伸试验中,当产生缩 颈时,在缩颈处的应力线,是三向拉伸的主应力图,如图 36-2所示 n 在镦粗时,由于摩擦的作用,也呈现出三向压应力图,如图 36-3所示 。 n 总之,受力金属的应力状态中,压应力有利于塑性的增加,拉应力将 降低金属的塑性。 n d冷变形硬化对金属塑性及变形抗力的影响 n 金属经过冷塑性变形,引起金属的机械性能、物理性能及化学性能的 改变。随着变形程度的增加,所有的强度指标(弹性极限、比例极限 、流动极限及强度极限)都有所提高,硬度亦有所提高;塑性指标( 伸长率、断面收缩率及冲击韧性)则有所降低;电阻增加;抗腐蚀性 及导热性能降低,并改变了金属的磁性等等,在塑性变形中,金属的 这些性质变化的总和称作冷变形硬化,简称硬化。 n e附加应力及残余应力的影响 n 在变形金属中应力分布是不均匀的,在应力分布较多的地方希望获得 较大的变形,在应力分布较少的地方希望获得较小的变形。由于承受 变形金属本身的完整性,就在其内部产生相互平衡的内力,即所谓附 加应力。当变形终止后,这些彼此平衡的应力便存在变形体内部,构 成残余应力,影响以后变形工序中变形金属的塑性和变形抗力。 n 1.1.4 提高金属塑性及降低变形抗力的工艺措施 n 针对影响金属塑性及变形抗力的主要因素,结合生产实际,采取有效 的工艺措施,是完全可以提高金属塑性及降低其变形抗力的,生产中 ,常采取的工艺措施有: n a坯料状况 n 冷镦用原材料,除了要求化学成份、组织均匀,不要有金属夹杂等以 外,一般要对原材料进行软化退火处理,目的在于消除金属轧制时残 留在金属内部的残余应力,使组织均匀,降低硬度,要求冷镦前金属 的硬度 HRB80。对中碳钢,合金钢一般采取球化退火,目的是除消 除应力、使组织均匀外,还可改善金属的冷变形塑性。 n b提高模具光滑度及改善金属表面润滑条件 n 这两项措施都是为了降低变形体与模具工作表面的摩擦力,尽可能降 低变形中由于摩擦而产生的拉应力。 n c选择合适的变形规范 n 在冷镦(挤)工艺中,一次就镦击成形的产品很少,一般都要经过两 次及两次以上的镦击。因此必须做到每次变形量的合理分配,这不仅 有利于充分利用金属的冷变形塑性,也有利于金属的成形。如生产中 采用冷镦、冷挤复合成形、螺栓的两次缩径、螺母的大料小变形等。 n 1.2 金属塑性变形的基本规律 1.2.1 最小阻力定律 n 金属在变形中,变形体的质点有向 各方向移动的可能,变形体质点的 移动是沿其最小阻力方向移动,称 为最小阻力定律。 n 在六角头螺栓多工位冷镦中,第二 工位精镦时,金属向上、下模开口 处流动并形成飞边是最小阻力定律 起作用的体现。图 36-4表明坯件在 模具中镦锻时,它在充满上、下模 腔的同时还向上、下模构成的间隙 向四周流,只有当往飞边流动的阻 力大于在模腔其它部分的阻力时, 金属充满模腔才有可能。在上模向 下运动中,飞边上金属流动阻力随 飞边厚度的减小而增加,这时才能 保证最后充满上、下模腔。 n 1.2.2 体积不变定律 n 金属塑性变形中,其密度改变极为微小,可以忽略。塑性变形的物体 之体积保持不变,金属坯件在塑性变形以前的体积等于变形后的体积 。 n 体积不变定律是根据产品形状尺寸、计算出体积,据此再确定所需坯 件的具体尺寸。 n 最小阻力定律则是金属变形次数如何确定,每次变形量如何分配、工 模具结构形状确定的设计最主要的依据。 n 1.2.3 变形中影响金属流动的主要因素 n a 摩擦的影响 n 在变形中模具和坯件间的接触面上不可避免的有摩擦力存在,由于摩 擦力的作用,改变了金属流动的特征。如图 36-5所示,在平板间镦粗 矩形坏料时,由于摩擦力的作用,使各向阻力不同,变形中,断面不 能继续保持矩形。按最小阻力定律,它会逐渐趋于圆形。若无摩擦力 作用,则坯件处于理想的均匀变形状态,变形前后在几何形状上仍然 相似。 n 图 36-6为环形坯件的镦粗示意图。当无摩擦时,环形件在高度上被压 缩,根据体积不变条件,不论是外层还是内层,金属的直径都有所增 加,即所有金属都沿径向辐射状向外流动。由于有摩擦的存在,流动 受到阻碍。越接近内层金属向外流动的阻力越大,比向内流动时还要 大,因而改变了流动的方向,如图所示,在环形件中出现了流动的分 界面( dN)。 n b工模具形状的影响 n 由于工模具形状不同,所施加给坯件的作用力,以及模具与坯件接触 的摩擦力也不一样,引致金属在各方向流动阻力的差异,从而金属在 各方向流动体积的分配也有所差异。 n c金属本身性质不均的影响 n 金属本身的性质不均,反映出金属成份的不均、组织不均、以及在变 形中内部温度的不均等。这些性质的不均匀性,在金属内部出现互相 平衡的附加应力,由于内力的存在,使金属在各自流动的阻力有所差 异,变形首先发生在阻力最小的部分。 2 金属冷镦(挤)工艺 n 2.1 冷镦(挤)工艺基本概念 n 2.1.1 冷镦、冷压 n 在室温状态下,将坯料置于自动冷镦机或压力机的模具中,对模具施 加压力,利用上、下模的相对运动,使坯件在模腔里变形,高度缩小 ,横截面增加,这样的压力加工方法,对自动冷镦机而言叫冷镦,对 压力机而言叫冷压。 n 实际生产中,紧固件冷成型工艺,在冷镦的过程中,常常伴随有挤压 的方式。因此,单就紧固件产品的冷镦工艺,实际是既有冷镦,也有 挤压的一种复合工艺的加工方法。 n 2.1.2 冷镦(挤)的变形方式 n a冲裁 使坯件的一部分与主体分割开。如线材的切断、螺母的 冲孔、六角头螺栓的头部切边等。 n b镦粗 使坯件高度缩短、横截面增加的加工方法,如螺母的镦 球、螺栓头部成型的预镦、精镦等。 n c正挤压 坯件在冷镦压中,坯件在下模中变形时,金属的流动方 向与上模的运动方向一致。冷镦螺栓、圆柱头内六角螺钉中的粗杆缩 径就是一种正挤压。 n d反挤压 坯件在变形中,金属的流动方向与上模的运动方向相反 。圆柱头内六角螺钉头部成形就属反挤压。 n e复合挤压 n 坯件在变形中金属的流动方向一部分与上模的运动方向相同,一部分 又相反。即变形中既存在正挤压,也存在反挤压。如圆柱头内六角螺 钉在同一工位变形中既有杆部缩径(正挤压)又有头部成型(反挤压 )。 n 2.1.3 冷镦(挤)变形程度 n a变形程度 n 是指坯料被镦锻部分长度在镦锻终了的压缩量与原始高度的比值,或 者坯料截面积在镦锻终了截面积的增加量与原始横截面的比值。 n b变形程度的表示方法 n 第一种方法用镦锻比 (S),如图 36-7所示。 n 即: (公式 36-5) n 式中: h0 被镦锻部分的原始高度 n d0 被镦锻部分的原始直径 n 镦锻比可以确定镦锻的难易,镦锻比 愈小,变形量愈小,变形更容易。镦 锻比愈大,变形愈难,金属纤维流动 不规则,有的纤维被折曲,形成纵向 弯曲现象。如图 36-8所示。 n 第二种方法用镦锻率( ) n 即: n (公式 36-6) (公式 36-7) n 式中 ho、 Fo 镦锻前头部材料的原始高度、横截面积 n h、 F 镦锻后工件的高度、横截面积 n c许用变形程度 n 当冷镦变形程度超过金属本身的变形限度时,变形的工件侧面会出现 裂纹,而造成不良品,其模具使用强度也会受到影响,降低使用寿命 ,严重时可使模具开裂而损坏。 n 金属的许用变形程度与金属本身的塑性有关 ,塑性好的金属 ,许用变形 程度要高于塑性较差的金属。碳钢含碳量愈高,它的塑性愈低,许用 变形程度也会愈小。 n 在生产中,对于塑性较差的金属,如中碳钢、合金钢的冷镦常采取对 钢材进行退火软化处理、增加模具的强韧性、金属表面润滑等,目的 就在于使金属的许用变形程度得到提高。 n 表 36-1列出了部分钢材的许用变形程度。 % 钢 材 牌 号 % 钢 材 牌 号 30 T10、 T12 70 75 15Cr、 Y12 35 50 50、 60Mn、 40CrNiMo 75 80 30、 35、 40Cr 55 60 40、 45、 30MnSi、 GCr15 80 90 10( 0.03%Si)、 10F、 15 65 70 20( 0.17 0.37%Si) n 2.1.4 镦锻次数的确定 n 产品在冷镦中,通常都要经过两次以上的镦锻才能成型。镦锻次数确 定合理,将充分利用金属的许用变形程度,提高模具的使用寿命,保 证产品的质量。确定镦锻次数,考虑下列因素: n a镦锻比 n 即坯料需要变形部分的长度与直径的比,比值过大,一次镦锻就会出 现纵弯现象,压扁后,会出现夹层,如图 36-9所示。要避免镦锻中出 现这些缺陷,必须增加镦锻次数。即首先将坯料预镦成锥形,之后再 精镦,直至达到需要形状。 n 一般按下列数据来决定镦锻次数: n 当 2.5时,可一次镦锻; n 当 2.5 4.5时,镦锻两次; n 当 4.5 6.5时,镦锻三次。 n b考虑工件头部直径 D与高度 H的比值。 n 如图 36-10所示,是头部直径较大、高度较小的大直径薄扁头细杆零 件,所需坯料 h0/d0在 2以上大头细杆零件,若采用一次镦锻成形,就 会在头部边缘处产生裂纹。类似的工件,只有增加镦锻次数,采用逐 步成形的方法。 n c考虑工件的表面粗糙度要 求及外部几何形状的复杂程度 n 如半圆头、圆柱头等形状的机 螺钉,虽然头部所需坯料的 ho/do值一般都小于 2.5,但为 了头部在变形中能充满,达到 标准要求,一般都采用两次镦 击。预镦锥形头部为精镦头部 成形创造良好的金属流动条件 。又如用大直径小变形的线材 镦制螺母,采用线材直径为 0.9s( s为六角螺母对边尺寸) ,一般产品的变形程度为 25% 左右,但由于六角螺母形状比 较复杂,镦制中变形方式较多 ,它既有冷镦又有复合挤压和 冲孔,为了有利于变形中金属 流动,因此选用 3 4次镦击成 形。 n 值得强调的,不是对所有形状比较复杂的产品都靠增加镦锻次数来解 决。往往有的产品,镦锻次数增加了,在第一次、第二次镦锻中很容 易成型,但由于冷作硬化的原因,使产品在以后的镦锻中难以进行。 表现在工件在镦锻中出现开裂或者损坏模具。解决这类问题的关键在 于减少变形量,增加钢材的塑性,采取更加有效的润滑。螺栓、螺钉 在冷镦工艺中选用大直径线材、小变形工艺。一般线材直径与螺钉螺 纹直径 D相接近,用一次或两次杆部缩径达到螺坯尺寸。对中碳钢、 合金钢而言,在材料改制中用球化退火来改善钢材的冷镦塑性,用磷 化、皂化处理来保证钢材的表面润滑,使之变形中尽可能减少摩擦。 另外在模具上增加强韧性,使它承受复杂的变形中有刚性,又有足够 的韧性和耐磨性。 n 2.1.5 冷镦工艺中力的计算方法 n 2.1.5.1 冷镦力 n 冷镦力是确定工艺参数、设计模具、设计冷镦机和专用设备选型的主 要依据。 n 决定冷镦力大小的因素较多,主要有以下几个方面: n a金属的机械性能 冷镦力随材料强度、硬度的增加而增加。 n b工件形状、变形程度 冷镦力随工件变形量的增加而增加。 n c摩擦 由于模具和工件间的接触面有摩擦力,不同程度地改变了作用力的方 向和大小,从而产生对冷镦力的影响。 n d工模具形状 n 工模具形状的不同,造成金属在各方向流动阻力的差异,从而影响冷 镦力。 n 2.1.5.2 冷镦力的计算方法 n 常用的冷镦力的计算公式有: n a经验公式 n P=KtF(公斤) (公式 36-8) n 式中 F 工件镦锻终止时的投影面积( mm2) n K 头部形状复杂系数,按图 36-11选择。对六角头螺栓, 一 般选 K=2.0 2.4 n t 考虑冷作硬化后的变形阻力,可由下式计算: t ( kg/mm2) (公式 36-9) n 式中 b 钢材抗拉强度极限( kg/mm2) n Fo 镦锻前坯料断面积( mm2) n b近似理论推导的计算公式 n 在考虑影响冷镦力大小的主要因素的基础上,并根据经验进行修正, 得出如下的冷镦力计算公式: n (公式 36-10) n 式中 d 镦锻后工件头部最大直径( mm) n h 镦锻后工件头部高度( mm) n F 工件头部投影面积( mm2) n Z 变形系数 n n 工具形状系数 n 工件变形部分形状系数 n 摩擦系数 n Z、 n、 、 可按表 36-2选取 n 表 36-2 冷镦力计算系数 b(N/mm2) Z变 形系数 n工具形状系数 冷 镦 部分形状系数 摩擦系数 牌号 数 值 工序 形状 系数 凹陷 棱角 系数 条件 系数 面 润 滑 系数 10 340 预 简 单 1.0 2 无 无 1.0 圆 柱形 1.3 研磨 石 墨 0.05 0.10 20 420 精 简 单 1.2 1.5 有 无 1.75 2.0 正方形六角形 2.0 研磨 无 0.1 0.15 25 460 精 复 杂 1.5 1.8 有 有 2.5 矩形 2.5 精加工 0.15 0.2 30 500 非 对 称形复 杂 形 2.5 3.0 粗加工 0.20 0.30 n 就计算的精确度而言,第二个公式比第一个公式计算结果要精确一些 ,但计算不如经验公式简单,一般常采用经验公式计算,最后预以修 正。 n 2.1.5.3 辅助工艺力的计算方法 n 1剪切力的计算 n 冷镦过程中,坯料的切断、头部切边、螺母冲孔等,都是使一部分材 料从基体中冲、切开来。影响剪切力大小的主要因素有钢材机械性能 、剪切面面积。其它如上、下切刀板的间隙、切刀刃口的锋利程度等 对剪切也发生影响,但计算中忽略不计。实际生产中,由于刀板刃口 的磨损、刀板间间隙大小,都会引致剪切力增加。 n a毛坯切断力的计算 n P剪 =F( N) (公式 36-11) n 式中 F 坯料剪切面面积( mm2) n 钢材抗剪强度 n 表 36-3列出了常用钢材的抗剪强度。 表 36-3 常用材料剪切加工一般所采用的间隙和 值 材 料 间 隙 ( % ) 抗剪 强 度 ( N/mm2)材料 材料 间 隙 ( % ) 抗剪 强 度 软 钢 6 9t 320 400 黄 铜 软 6 10t 220 300 硬 钢 8 12t 550 900 硬 350 400 硅 钢 7 11t 450 560 铝 软 5 8t 70 110 不 锈 钢 420 560 硬 610t 130 180 铜 软 6 10t 180 220 铝 合 金 软 6 10t 220 硬 250 300 硬 380 注: t 坯料截面(剪切面)厚度 ,mm n b切边力的计算公式 n P切 =LH( N) (公式 36-12) n 式中 L 切边周长( mm) n H 切边高度( mm) n c螺母冲孔力的计算公式 n 式中: d 冲孔直径( mm) n h 冲孔连皮厚度( mm) n (注:冲孔连皮是指螺母坯料冲孔时,需要冲出的铁豆厚度,它小于 螺母的高度。) n 2缩径力的计算 n 冷镦螺栓一般都采用粗径线材缩径工艺,即将大于螺纹外径的线材, 经过一次或两次缩径,达到搓制螺纹坯料的尺寸。就缩径而言,实际 是一个正挤压,可应用正挤压实心件的计算公式: n P=pF( N) (公式 36-14) n 式中: P 单位挤压力( N/mm2) n F 缩径前杆部截面积( mm2) n P可根据含碳量不同,变形程度 不超过 30%时,可取 P=600 900N/mm2。 n 2.1.5.4 顶料力 n 螺栓在冷镦成形中的预镦、精镦、缩径、切边,螺母在镦球、压型等 过程中,都需要将所镦锻的坯件从凹模中推出,需要一定的顶料力。 影响顶料力大小的主要因素有:钢材种类、工件轮廓形状、尺寸大小 、模腔接触表面的粗糙度、润滑等。在正常情况下,一般顶料力不大 ,当工件与凹模接触面产生 “粘滞 ”,摩擦力将大大增加,还有螺母球 在凹模中产生重料(两个螺母球坯),顶料力就会成倍增加,严重时 还会损坏模具,影响机器运转。所以自动冷镦机的顶料机构一般都有 与主机联锁的保险装置,一旦顶料出现故障,能自动停车。 n 顶料力的计算主要用于校核顶料机械中顶料杆、顶料凸轮的强度。 n a 凹模顶料力 n PT=tF( N) (公式 36-15) n 式中 t 单位面积上的顶料力。经验数据 t=500 600N/mm2 n F 冷镦工件杆部断面积 mm2,冷镦螺母取相应的坯件的投影 面积 mm2 n b 切边顶料力 n PT=PKt( N) (公式 36-16) n 式中 P 切边力( N) n Kt 系数 n 头部高度 5, Kt=0.1 0.12 n 头部高度 5, Kt=0.12 0.15 2.2 冷镦工艺中工序、工位变形形状的分析 n 紧固件产品的冷镦(压),由压力机、自动冷镦机来完成。分序冷压 、单工位、多工位冷镦中,上序或上工位镦(压)的半成品形状,直 接影响着下序或下一工位的成形。因此 ,在合理分配变形比的基础上如 何确定正确的变形形状,对以后的变形以及产品质量都有着直接关系 。 n 2.2.1 杆状紧固件的冷镦(压)工艺 n 杆状紧固件冷镦(压)加工,应考虑各工序(工位)的有关参数。主 要参数有镦锻比, Lo、 do分别为毛坯镦锻部分的原始长度和原始直径 ;D、 H分别表示镦锻后工件的直径和高度,参见图 36-7。 n Lo/do是衡量毛坯镦粗变形的纵向稳定性,即毛坯镦粗部分在镦粗时的 抗纵向弯曲能力。 Lo/do的值越小,越有利于头部的镦锻成形; Lo/do 的值过大时,毛坯镦锻部分产生纵向弯曲。影响坯件镦粗变形的纵向 稳定性除 Lo/do的值以外,还有其他因素。无论是自动冷镦机,还是切 料机,无论是刀板切料,还是套筒刀切料,坯件的切断面都不能与其 轴心线垂直,应有一个 1 5角的倾斜。这样在冷镦(压)时,初冲 对坯件的着力点不在中心,而会出现偏心,使坯件受力不均,从而产 生变形不均,导致头部成形时因纵向弯曲而出现折迭。对于切断面倾 斜角小的,变形中产生的纵向弯曲不明显,不至于达到影响头部质量 的程度。在冷镦(压)工艺中,在切断以后,安排一个坯件整形,其 主要目的就在于此。 n 此外,初冲型腔的底端是对坯件施加镦锻力的传递面,如果中心偏移 ,合力的作用中心势必产生偏移,同样道理,也是影响产生纵向弯曲 的因素。在初冲中采取带弹簧的顶杆(参见图 36-13),就可缓解这 种影响。其它如机床的运行精度、操作者对工装安装调整水平也对初 冲成形有影响。 n 为了使初冲变形中,改变坯件的稳定性,尤其对于低碳钢这类切断性 较差的钢种,为了增加坯件在变形中的稳定性,在初冲小端工作型腔 中除了锥形外,还要有高为 1.5 2mm的圆柱形型腔 ,如图 36-12所示 。 n 据经验,当 Lo/do 2.3时,只需要一次镦锻就可成形,不会出现纵向 弯曲,当 Lo/do 4.5时,要经过两次镦锻完成头部成形;当 Lo/do 8时 ,则要通过三次镦锻完成头部成形。总之, Lo/do的值愈大,需要镦 锻的次数愈多。对于中碳钢、合金钢而言,由于镦锻带给的冷作硬化 ,使以后的变形工序难以进行,这时需要将连续冷镦(压)改成分序 冷压,在工序间的半成品经过软化退火处理,使半序品硬度降低,并 去除工序变形中产生的内应力。 n D/H的比值愈大,镦锻成形难度就愈大。实际上,可将表示 D、 H的产 品变形终了尺寸算成体积,再算出所需毛坯的长度 Lo和直径 do ,用 Lo/do的值来确定镦锻次数。 n (1) 六角头螺栓头部初镦形状的确定 n 初镦的形状确定合理,将有利于金属在型腔里的流动,使金属纤维流 动不紊乱,有利于下一工位的变形。 n 初镦的形状为锥形,初镦锥形模腔有两种形式,一为不带弹簧顶杆( 针),一为带弹簧顶杆(针) ,见图 36-13。 n 不带弹簧顶杆的锥形冲模用于 长杆工件的镦制;带弹簧顶杆 的冲模用于杆部较短的工件。 不带弹簧顶杆初冲的锥形型腔 锥角适当大一些,使工件容易 脱离初镦模,一般 取 n 8 16,初镦冲头的内腔形 状 ,见图 36-14。 在三击镦锻时,需要镦两次锥形,第一次 锥形,锥角特别小, 为 2 3,基本起 着整形作用,使它在第二次初镦变形中, 有一个良好的对中性和稳固性。锥形冲模 工作型腔的尺寸,可根据要镦制头形的体 积、线材直径、冲模与凹模之间的距离来 计算出来。由图 36-15可见,整个锥形头 部的体积由体积 V1和 V2两部分组成,即 V 锥 =V1+V2,而 V锥等于产品头部精镦后 的体积即 V。 V可由产品尺寸计算出,则 V1=V-V2。 n 从图 36-15可看出, V2的制约因 素较多,如冲模与凹模的间隙距 离、凹模工作凹穴的深度,以及 金属在里面的充填形状、形成 V2 的桶形直径等,所以一般都采用 经验公式: n V1=KV( mm3) (公式 36-17) n 式中 V 形成产品头部的体积 n K 产品形状系数 n 对于六角头螺栓及六角头导颈螺 栓, K=0.75 0.85; n 对于半圆头螺钉, K=0.7 0.8; n 对于沉头螺钉, K=0.5 0.6。 n 锥形体的小端直径 dM等于原材料 的最小尺寸或略小于最小尺寸, 锥形体的大端直径 DK取 1.2 1.3dM。 n 当 DK=1.2dM时,锥形体的体积 V1为: (公式 36-18) 则 (公式 36-19) 如取 DK=1.3dM时 (公式 36-20) 模腔锥角 (公式 36-21) n (2) 机器螺钉初镦形状的确定 n 机器螺钉种类很多,主要区别于头部的几何形状。总的说,机器螺钉 头部成形的镦锻比( S=Lo/do和 D/h),值比较小,比较容易镦锻。 对于简单头形的机器螺钉,单击冷镦生产的工件 ,如图 36-16,可采用 一次镦锻。但是,不少品种的机器螺钉,头部槽型比较复杂。为十字 槽型等,头部成形则需要两次及以上的镦制。要按标准镦制符合槽型 要求的产品,初冲的造型起着决定性的作用。 n 在精镦头部成形时,同时对槽型产生镦挤,这时产品头部的变形,除 了金属因镦粗而流动充满头部大端以外,还会伴随槽型的挤压而有一 个反受力方向流动的趋势,从而影响大端边缘金属的充满。尤其在槽 型方向有明显 “缺肉 ”的现象。为了解决这个局部不充满的缺陷,将初 n 冲的顶端做成圆弧形,对于平圆头十字槽螺钉的初冲做成圆锥形的顶 端 , 并带一个 120 150的锥角体 ,见图 36-17。其目的是为了减少变 形中金属的反向流动,有利于头部大端的充满。 n (3) 内六角圆柱头螺钉初镦形状的确定 冷镦内六角圆柱头螺钉 (头部镦锻比小于 1.5),由 于头部带较深的内六方孔,几何形状复杂,产品 性能要求高,为 8.8、 10.9、 12.9级,使用的钢材 为中碳钢、合金钢、冷成形性能差,头部变形复 杂,镦粗、正挤压、反挤压都有。因此,这类产 品初冲成形,一般应经过初镦和第二次预镦。图 36-18列出了几种生产中常用的初镦形状。在二 序预镦中,头部镦出内六角预成形凹穴,是为下 一工位精制内六方孔时,减少变形量,金属在反 挤压变形中流动阻力小一些,使六角冲头承受的 载荷尽可能减小,并且使金属流动比较均匀地充 满头部上、下端的边缘。 n (4) 杆状紧固件的精镦 n 杆状紧固件的精镦是将预镦成形的坯件头部在上、下模间的工作型腔 里进行镦制,获得产品头部的最终形状和尺寸。 n 头部的变形因产品头部几何尺寸不同而不一样,大体有以下几种形式 : n a 六角头、四方头的螺栓 n 图 36-19所示成形区有三个区域,头部高度的 1/3在上模型腔成型, n 1/3 2/5在下模型腔成形,其余 在上、下模间的间隙形成飞边,最 后由切边工艺完成六角头、四方头 的切边。 n b 半圆头、平圆头类型的机器 螺钉,头部完全在上模(光冲)型 腔成形。 n c 内六角圆柱头螺钉、凹穴六角 头螺栓类产品,头部在下模型腔里 成形。因为是精镦,上、下模的工 作型腔皆要满足产品头部尺寸的要求。 n (5) 杆状紧固件的缩径工艺 n 六角头螺栓是应用很普遍的紧固件,它的强度级别范围大,从 3.6 12.9级都有生产。对于中、低强度级别的六角头螺栓,一般采用两种 工艺生产,一为细杆工艺,一为粗杆缩径工艺。所谓细杆,是用相当 于螺纹坯径尺寸的线材进行冷镦,线材尺寸变化很小,杆部可以直接 搓制螺纹;粗杆是用大于螺纹外径尺寸的线材,冷镦工艺中安排一 n 次、二次或二次以上的缩径,使螺纹长度部分的杆部达到螺坯尺寸。 n 内六角圆柱头螺钉按国家标准规定是 8.8级及其以上级别的高强度产 品,尽管头部变形程度不大,但使用线材强度较高,塑性相应要小, 因此普遍采用粗杆缩径工艺,冷镦中经过一次及以上次数的缩径,使 螺纹长度的杆部直径达到螺坯尺寸。 n 六角头螺栓采用细杆工艺,冷镦时头部变形程度相对于粗杆来说有所 增加,它适用于短规格全螺纹产品的生产。 n 细杆工艺生产螺栓,常存在以下问题: n a. 头部变形程度大,容易产生裂口,有时 切六方边裂口也不能完全去除。 n b. 头部在镦粗中,常因变形程度大而产生 纵向弯曲,在距支承面 1/3处出现折迭 ,见图 36-20,并导致螺栓掉头。 n c. 头部与杆部结合强度较差,成为细杆螺 栓掉头的隐患。采用粗杆缩径工艺,避免了 以上问题。但是,由于需要缩径,它不仅增 加了缩径力,使模具结构也相应复杂了。 它必须有缩径模,一般用硬质合金加工,增加了模具成本。 n 此外,对线材的表面润滑、材料硬度也有特殊要求。生产中采用的线 材大部分都经过磷化、皂化处理。线材经过球化退火 ,硬度应为 75 85 HRB。 n 总的说来,粗杆缩径工艺虽然对线材、模具要求高,增加了生产成本 ,但是就产品质量而言,它可减少由于材料塑性不好而产生的产品开 裂。提高了材料利用率,保证了产品的强度要求,综合经济效率还是 好的。 n 图 36-21 螺栓两次缩径工艺图示例 n 图 36-22是圆柱头内六角螺钉工艺图示例 n (6) 螺栓头部切边 n 六角头螺栓有头部带凹穴的及头部平顶的两种型式。从生产和使用角 度看,头部平顶的六角头螺栓,要占总量的 90%以上。头部带凹穴的 螺栓,由于头部直接冷镦(压)成形,对线材塑性要求高,六角棱边 充满差,常呈秃角,在扳拧使用中容易打滑,这点在设备自动装配线 上反映更敏感,客观上限制了这种头型螺栓的生产。 n 头部平顶的螺栓,六方是由切边形成的,切边可安排在多工位自动冷 镦机按多工位生产工艺完成,也可由专用的切边机上来完成。 n 2.2.2 螺母冷镦(压)工艺 n 1常用螺母冷镦工艺分类 n 六角螺母也是一种使用面很广的紧固件,它的生产方法较多, M24以 下规格的螺母普遍采用冷镦(压)方法生产。常用的螺母冷镦工艺有 以下几种: n a. 用较小直径的线材冷镦生产螺母 n 这是一种冷镦生产螺母中用得最多的生产方法。使用线材直径 do=0.60s 0.70s, s 螺母对方尺寸。采用切料、整形、镦球、压 六方、冲孔的工位(工序),见图 36-23。在三工位、四工位自动冷 镦机生产,也可在压力机上分序生产。在三工位冷镦机上生产可省去 整形,但大于 M12以上规格的螺母,不经整形,端面质量及秃角的均 匀性都不好控制。 n b. 用较大直径的线材冷镦生产螺母 n 这种工艺使用线材直径 do0.9s,经切断、整形、初镦、预成形、精 成形、冲孔而成,一般在五工位自动冷镦机上生产,夹钳带翻转机构 , 见 图 36-24。 n c. 六方钢成形工艺 n 这种工艺方法用的较少,一般用于 M20以上大规格螺母的生产,在压 力机上用分序冷压的方法完成。工艺流程按切料、初压、精压、冲孔 进行生产。 n 2螺母冷镦(压)工艺分析及工艺参数 n a. 切断 n 在自动冷镦机多工位生产或压力机上分序生产,切断都是第一道工序 ,也是较关键的工序。因为切料断口的平整性、切刀板压下所形成的 马蹄印大小 (见图 36-25),都对下序的整形、镦球有直接的影响。由公 式 36-22可计算出切料长度。 n (公式 36-22) 式中 Lo 切料长度 mm V型 螺母冲孔前坯料体积( mm3) n Fo 线材截面积 mm2 n 这仅是一个计算值,实际生产中还要通过调整档料柱来修正切断长度 。有时还用称重法来衡量切料是否准确,即坯料重相当于切断的料柱 重。切断模的孔径应比料的最大直径大 0.05 0.1mm,刀板与切断模 之间的间隙为 0.1mm左右。 n b. 整形 n 如图 36-26所示,整形是把料柱的端面镦平,在下端镦(压)出 1 245的倒角,目的是将切料的缺陷进行修整,保证下一压球工序的 质量。 n 整形的尺寸 n d=do+(0.1 0.25)(mm) n 式中 do 线材直径 mm。 n c. 镦球 n 镦球是将整形后的料柱镦(压)成鼓形球状 ,见图 36-27,它的质量影 响螺母的端面、秃角、棱边的清晰和质量。在确定鼓形球几何尺寸时 ,按经验,在倒角 40确定的情况下, dM、 h尺寸应尽可能小。这样, 在压六方时,相应部位的摩擦力要小,金属在压型力的作用下,金属 流动性好,容易充满六方。如果 dM、 h偏大,则在压六方时,不易充 满六角。如果为了使六方充满而增加压型力,则螺母端面就会产生飞 边。 n 鼓形球尺寸按经验数据如下: n dM=(0.7 0.8)d径 n DmaxSmin 式中 d径 螺母公称直径 mm Dmax 鼓形球最大直径 mm smin 螺母 s方最小尺寸 mm n 根据 dM、 D的尺寸和螺母坯料体积, 鼓形球的其它尺寸可通过计算得出: (公式 36-23) H=h+(D-dM)tg40 (公式 36-24) n d. 压型 n 压型 ,即镦压成型螺母的六方,使之满足六方螺母外形尺寸的要求。变 形尺寸是否合理,直接影响产品的质量和模具的寿命。 n 压六方的尺寸要考虑的主要因素有:六方坯在六方凹模里的脱模及下 序冲孔的胀方。因此,要求螺母侧面要有一个倾斜角 (见图 36-28) ,其大小随规格的增加而偏大,如 M10以上的螺母, 一般取 0.30 1,如 角过大,六方凹模上、下端口尺寸相差较多,会使六方下冲 (又称压型下模)在套模内定位不稳,容易造成镦压螺母坯料偏心, 使螺母的垂直度( )超差,同时经冲孔胀方后 s尺寸也达不到标准要 求。 取 0.30 1实际是由生产实际经验摸索而定的。 n 压型除这个尺寸以外,还有很多尺寸与 螺母的外形尺寸及产品的外观等有直接 关系(见图 36-29) ,表示出了螺母压型坯 件的尺寸。其中,两端凹穴的几何形状 尺寸很重要。 d1是一个关键尺寸,偏 小,冲孔容易产生毛刺 ;偏大,冲孔容易 出现喇叭口,影响内螺纹的完整。经验 数据为: n M8: d1=d小 max+(0.02 0.04)mm n M8 M14: d1=d小 max+(0.05 0.10)mm n M14 M18: d1=d小 max+(010 0.15)mm n M18 M24: d1=d小 max+(0.15 0.30)mm n 式中: d小 max 螺母内螺纹小径最大尺寸( mm) n d=(1.05 1.1)d径 n 式中 d径 螺母公称直径( mm) n d尺寸过小,不利于螺母镦压成型,不利于金属流动,六棱角不清晰 ; d尺寸过大,螺母支承面减小,影响外观及紧固强度。 n d1和 d尺寸确定后,按标准螺母内倒角 120,一般取为 106,其原 因是内倒角取小一点,按公式计算, h尺寸就可大一些,这样既可节 省钢材,螺母压型时变形有利,又可缩小冲孔连皮(即冲孔冲出的铁 豆)厚度,有利于冲孔。 n h=(d-d1)tg37 (公式 36-25) n 凹穴中另一重要尺寸为 h1和 角,它们对螺母镦压成型后,从六角凹 模顶出的六方下冲有影响。 h1不宜过高,过高将影响螺母六方型坯及 时从六方下模冲脱开,接着下一个型坯又进入凹模,从而引起重帽, 而产生故障。经验数据为: n M6: h10.30mm n M8 M10: h1=( 0.4 0.5) mm n M10 M16: h1=( 0.6 1.0) mm n M18 M24: h1=( 1.2 1.6) mm n 对 M20以上螺母,压型上模的 h1可比下模高( 0.30 0.50) mm,更 有利于冷镦变形。 n 一般取 10 15。 n h1、 确定后, d2尺寸可按下式计算: n d2=d1-2h1tan (公式 36-26) n 凹穴顶部为一圆锥,锥角取为 150,则圆锥的角度为 tg15,整个凹 穴的高度为: n h2=h+h1+tg15 (公式 36-27) n 凹穴尺寸一般不作为检验依据,由模具的尺寸来保证。 n 上述数据依据为 GB/T 6170-2000标准螺母。对于其他型式的螺母不 完全适用。 n e. 冲孔 n 冲孔尺寸大小、质量,都是为了满足下序攻螺纹的要求。螺母内孔直 径一般按小径最大尺寸决定。考虑到钢材硬度要影响冲孔质量,孔径 可定在螺母小径最小尺寸与最大尺寸之间,由操作者在其公差范围内 灵活掌握。实际上考虑到攻丝的因素,冲孔尺寸的公差要小于小径的 公差。 n 冲孔必须注意以下两方面的问题: n ( 1)螺母冲孔后 s方胀方问题 n 冲孔实际上是对坯料进行冲切。内孔冲裁表面有冲切面还有撕裂面( 图 36-30)。孔冲对内孔产生的冲切力导致孔冲与内孔的接触面产生 摩擦力,与孔冲向下冲切方向相反,这样形成的附加应力所导致径向 张力,使 s方径向扩张,即胀方。很显然,胀方的大小与孔冲刚度、 刃部锋利情况有关,还与螺坯的材质有关。低碳钢比中碳钢胀方要大 ,普碳钢比相同含碳量的优质钢胀方要大。这可从钢材的切削性能随 含碳量的增加而提高 ,得到解释。当然,由于钢材含碳量增加,强度增 加,它对孔冲的强韧性要求也更高。 n 此外,胀方与螺母对方尺寸(即对边 宽度) s与螺母高度 m的比值有关,表 36 -4列出了部分规格螺母冲孔后的胀方值。 n 即使注意到了这些问题,但往往由于螺 母材质发生变化 (材质为中碳钢或合金钢 ) ,一般也解决不了因胀方而使 s方超差的 问题,在 M16及以上规格更突出。为了 解决 s方因冲孔胀方而超差的问题,可采 取以下措施: n a. 减小冲孔尺寸,增加铰孔,铰孔余量 在 0.5 1mm; n b. 采用两次冲孔,第二次冲孔余量在 1毫 米左右。第二次冲
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 逾期账款催收合同协议
- 津滋陈列协议书
- 商业空间设计与施工配合合同
- 研发团队建设培训
- 道路标牌采购合同协议
- 路由器项目合同协议
- 汽车包月协议书
- 车子抵押开走合同协议
- 热浸镀锌协议书
- 潮安离婚协议书
- 国家开放大学《城市管理学》形考任务1-4试题及答案
- GB/T 21268-2014非公路用旅游观光车通用技术条件
- GB/T 12444-2006金属材料磨损试验方法试环-试块滑动磨损试验
- 第五章曲霉病课件
- 《广东省幼儿园(班)设备设施配备标准(试行)》
- 名著导读围城阅读练习及答案
- 修辞手法-完整版PPT
- 吞咽障碍功能训练课件
- GB∕T 37665-2019 古陶瓷化学组成无损检测PIXE分析技术规范
- 毕业论文答辩课件
- 多杆合一工程设计说明
评论
0/150
提交评论