北京市通州区2017届九年级上期末数学试卷含答案解析_第1页
北京市通州区2017届九年级上期末数学试卷含答案解析_第2页
北京市通州区2017届九年级上期末数学试卷含答案解析_第3页
北京市通州区2017届九年级上期末数学试卷含答案解析_第4页
北京市通州区2017届九年级上期末数学试卷含答案解析_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第 1 页(共 29 页) 2016年北京市通州区九年级(上)期末数学试卷 一、选择题(本题共 30 分,每小题 3 分)第 1均有四个选项,符合题意的选项只有一个 . 1已知 2a=3b,则 的值为( ) A B C D 2函数 y= 中自变量 x 的取值范围是( ) A x 1 B x 0 C x 0 D全体实数 3下列图形中有可能与图相似的是( ) A B C D 4如图,在 , C=90, , ,则 值为( ) A B C D 5如图, A, B, C, D 是 O 上的四个点, 么 与 的数量关系是( ) A = B C D无法确定 6如图,图象对应的函数表达式为 ( ) 第 2 页(共 29 页) A y=5x B C D 7在抛物线 y= 2( x 1) 2 上的一个点是( ) A( 2, 3) B( 2, 3) C( 1, 5) D( 0, 2) 8如图,某学校数学课外活动小组的同学们,为了测量一个小湖泊两岸的两棵树 A 和 B 之间的距离,在垂直 方向 确定点 C,如果测得 5 米, 5,那么 A 和 B 之间的距离是( )米 A 75B 75C 75D 9在平面直角坐标系 ,二次函数 y=图象经过点 A, B, C,则对系数 a 和 b 判断正确的是( ) A a 0, b 0 B a 0, b 0 C a 0, b 0 D a 0, b 0 10如图,在 O 中,直径 点 E, , 沿着 折,对折之后的弧称为 M,则点 O 与 M 所在圆的位置关系为( ) 第 3 页(共 29 页) A点在圆上 B点在圆内 C点在圆外 D无法确定 二、填空题(本题共 18 分,每小题 3 分) 11计算 12把二次函数 y=2x+3 化成 y=a( x h) 2+k 的形式为 13如图, A, B, C, D 分别是 边 上的四个点,且 垂直于 的一条边,如果 B=2, ,那么 14如图,在 ,点 O 是 内心, 18, A= 15二次函数 y= x 2 的图象如图所示,那么关于 x 的方程 x 2=0 的近似解为 (精确到 16数学课上,老师介绍了利用尺规确定残缺纸片圆心的方法小华对数学老师说: “我可以用拆叠纸片的方法确定圆心 ”小华的作法如下: 第 4 页(共 29 页) 第一步:如图 1,将残缺的纸片对折,使 的端点 A 与端点 B 重合,得到图 2; 第二步:将图 2 继续对折,使 的端点 C 与端点 B 重合,得到图 3; 第三步:将对折后的图 3 打开如图 4,两条折痕所在直线的交点即为圆心 O 老 师肯定了他的作法那么他确定圆心的依据是 三、解答题(本题共 72 分,第 17,每小题 5 分,第 27 题 7 分,第 28 题7 分,第 29 题 8 分)解答应写出文字说明、演算步骤或证明过程 . 17计算: 3 18计算:( 3) 0+4 +|1 | 19已知 作 内 切圆 20如图,四边形 四边形 接对角线 证 21二次函数 y= 2m+1) x+1 与 x 轴交于 A, B 两个不同的点 ( 1)求 m 的取值范围; ( 2)写出一个满足条件的 m 的值,并求此时 A, B 两点的坐标 第 5 页(共 29 页) 22在平面直角坐标系 ,直线 y= x+1 与双曲线 y= 相交于点 A( m, 2) ( 1)求反比例函数的表达式; ( 2)画出直线和双曲线的示意图; ( 3)过动点 P( n, 0)且垂于 x 轴的直线与 y= x+1 及双曲线 y= 的交点分别为 B 和 C,当点 B 位于点 C 上方时,根据图形,直接写出 n 的取值范围 23如图, O 的直径 直弦 点 E, , A=求 长 24在数学活动课上,老师带领学生去测量操场上树立的旗杆的高度,老师为同学们准备了如下工具: 高为 m 米的测角仪, 长为 n 米的竹竿, 足够长的皮尺请你选用以上的工具,设计一个可以通过测量,求出国旗杆高度的方案(不用计算和说明,画出图形并标记可以测量的长度或者角度即可,可测量的角度选用 , , 标记,可测量的长度选用 a, b, c, d 标记,测角仪和竹竿可以用线段表示) ( 1)你选用的工具为: ;(填序号即可) ( 2)画出图形 25如图,在 , F 是 一点,以 直径的 O 切 点 D,交点 G, 于点 E ( 1)求证: ( 2)如果 , AO=a,请你写出求四边形 积的思路 第 6 页(共 29 页) 26有这样一个问题:探究函数 y= x 的图象与性质 小东根据学习函数的经验,对函数 y= x 的图象与性质进行了探究 下面是小东的探究过程,请补充完整: ( 1)函数 y= x 的自变量 x 的取值范围是 ; ( 2)下表是 y 与 x 的几组对应值,求 m 的值; x 4 3 2 1 1 2 3 4 y m ( 3)如图,在平面直角坐标系 ,描出了以上表中各对对应值为坐标的点根据描出的点,画出该函数的图象; ( 4)进一步探究发现,该函数图象在第三象限内的最高点的坐标是( 2, ),结合函数的图象,写出该函数的其它性质(一条即可) 27已知:过点 A( 3, 0)直线 y=x+b 与直线 y= 2x 交于点 B抛物线y=bx+c 的顶点为 B ( 1)求点 B 的坐标; 第 7 页(共 29 页) ( 2)如果抛物线 y=bx+c 经过点 A,求抛物线的表达式; ( 3)直线 x= 1 分别与直线 于 C, D 两点,当抛物线 y=bx+c 与线段交点时,求 a 的取值范围 28在等边 , E 是边 的一个动点(不与点 B, C 重合), 0, 角平分线 点 F ( 1)如图 1,当点 E 是 中点时,请你补全图形,直接写出 的值,并判断 数量关系; ( 2)当点 E 不是 中点时,请你在图( 2)中补全图形,判断此时 证明你的结论 29在平面直角坐标系 ,若 P 和 Q 两点关于原点对称,则称点 P 与点 和谐点对 ”,表示为 P, Q,比如 P( 1, 2), Q( 1, 2) 是一个 “和谐点对 ” ( 1)写出反比例函数 y= 图象上的一个 “和谐点对 ”; ( 2)已知二次函数 y=x2+mx+n, 若此函数图象上存在一个和谐点对 A, B,其中点 A 的坐标为( 2, 4),求 m,n 的值; 在 的条件下,在 y 轴上取一点 M( 0, b),当 锐角时,求 b 的取值范围 第 8 页(共 29 页) 2016年北京市通州区九年级(上)期末数学试卷 参考答案与试题解析 一、选择题(本题共 30 分,每小题 3 分)第 1均有四个选项,符合题意的选项只有一个 . 1已知 2a=3b,则 的值为( ) A B C D 【考点】 例的性质 【分析】 根据等式的性质,可得答案 【解答】 解:两边都除以 2b,得 = , 故选: B 2函数 y= 中自变量 x 的取值范围是( ) A x 1 B x 0 C x 0 D全体实数 【考点】 比例函数的性质 【分析】 根据分式有意义,分母不等于 0 解答 【解答】 解:函数 y= 中自变量 x 的取值范围是 x 0 故答案为: x 0 3下列图形中有可能与图相似的是( ) A B C D 【考点】 似图形 第 9 页(共 29 页) 【分析】 根据相似图形的定义直接判断即可 【解答】 解:观察图形知该图象是一个四边形且有一个角为直角,只有 C 符合, 故选 C 4如图,在 , C=90, , ,则 值为( ) A B C D 【考点】 角三角函数的定义 【分析】 利用勾股定理求出 长度,然后根据 代入数据进行计算即可得解 【解答】 解: C=, , , = =5, = 故选 D 5如图, A, B, C, D 是 O 上的四个点, 么 与 的数量关系是( ) A = B C D无法确定 【考点】 心角、弧、弦的关系 【分析】 根据平行线的性质得 据圆周角定理得 = 【解答】 证明:连接 第 10 页(共 29 页) = 故选: A 6如图,图象对应的函数表达式为( ) A y=5x B C D 【考点】 比例函数的图象 【分析】 根据函数的图象的形状及位置确定函数的表达式即可 【解答】 解: 函数的图象为双曲线, 为反比例函数, 反比例函数的图象位于二、四象限, k 0, 只有 D 符合, 故选 D 7在抛物线 y= 2( x 1) 2 上的一个点是( ) A( 2, 3) B( 2, 3) C( 1, 5) D( 0, 2) 【考点】 次函数图象上点的坐标特征 【分析】 把各点的横坐标代入函数式,比较纵坐标是否相符,逐一检验 【解答】 解: A、 x=2 时, y= 2( x 1) 2= 2 3,点( 2, 3)不在抛物线上, 第 11 页(共 29 页) B、 x= 2 时, y= 2( x 1) 2= 18 3,点( 2, 3)不在抛物线上, C、 x=1 时, y= 2( x 1) 2=0 5,点( 1, 5)不在抛物线上, D、 x=0 时, y= 2( x 1) 2= 2,点( 0, 2)在抛物线上, 故选 D 8如图,某学校数学课外活动小组的同学们,为了测量一个小湖泊两岸的两棵树 A 和 B 之间的距离,在垂直 方向 确定点 C,如果测得 5 米, 5,那么 A 和 B 之间的距离是( )米 A 75B 75C 75D 【考点】 直角三角形的应用 【分析】 根据题意,可得 时可知 据三角函数的定义解答 【解答】 解:根据题意,在 5, 5,且 , 则 C 75 故选 C 9在平面直角坐标系 ,二次函数 y=图象经过点 A, B, C,则对系数 a 和 b 判断正确的是( ) A a 0, b 0 B a 0, b 0 C a 0, b 0 D a 0, b 0 【考点】 次函数图象与系数的关系 第 12 页(共 29 页) 【分析】 根据二次函数 y=图象经过点 A, B, C,画出函数图象的草图,根据开口方向和对称轴即可判断 【解答】 解:由题意知,二次函数 y=图象经过点 A, B, C, 则函数图象如图所示, a 0, 0, b 0, 故选: A 10如图,在 O 中,直径 点 E, , 沿着 折,对折之后的弧称为 M,则点 O 与 M 所在圆的位置关系为( ) A点在圆上 B点在圆内 C点在圆外 D无法确定 【考点】 与圆的位置关系; 径定理; 折变换(折叠问题) 【分析】 作辅助线 ,根据垂径定理得: D= 据直径得出半径的长为 4,根据勾股定理计算得出 长,接着计算 长,做比较, O 与新圆心的距离小于半径的长,得出结论 【解答】 解:过 O 作 O 于 G,交 M 于 H,连接 O 的直径, , B=D=4, 第 13 页(共 29 页) 在 ,由勾股定理得: = = , 在 , = = =2 , , 由 勾股定理得: = = , 由折叠得: M 所在圆与圆 O 是等圆, M 所在圆的半径为 4, G=4 , 4 , O 在 M 所在圆内, 故选 B 二、填空题(本题共 18 分,每小题 3 分) 11计算 【考点】 殊角的三角函数值 【分析】 根据记忆的内容, 即可得出答案 【解答】 解: 故答案为: 12把二次函数 y=2x+3 化成 y=a( x h) 2+k 的形式为 y=( x 1) 2+2 【考点】 次函数的三种形式 第 14 页(共 29 页) 【分析】 根据配方法的操作整理即可得解 【解答】 解: y=2x+3, =2x+1+2, =( x 1) 2+2, 所以, y=( x 1) 2+2 故答案为: y=( x 1) 2+2 13如图, A, B, C, D 分别是 边上的四个点,且 垂直于 的一条边,如果 B=2, ,那么 【考点】 直角三角形 【分析】 根据三角函数的定义即可得到结论 【解答】 解: 0, , B=2, , , , = ; 故答案为: 14如图,在 ,点 O 是 内心, 18, A= 56 第 15 页(共 29 页) 【考点】 角形的内切圆与内心 【分析】 先根据 18求出 度数,再由角平分线的性质求出 度数,由三角形内角和定理即可得出结论 【解答】 解: 18, 80 118=62 点 O 是 个角的角平分线的交点, ( =124, A=180 124=56 故答案为: 56 15二次函数 y= x 2 的图象如图所示,那么关于 x 的方程 x 2=0 的近似解为 精确到 【考点】 图象法求一元二次方程的近似根 【分析】 根据二次函数图象与 x 轴交点的横坐标是相应的一元二次方程的解,可得一元二次方程的近似根 【解答】 解: 抛物线 y= x 2 与 x 轴的两个交点分别是( 0)、( ), 又 抛物线 y= x 2 与 x 轴的两个交点,就是方程 x 2=0 的两个根, 方程 x 2=0 的两个近似根是 16 页(共 29 页) 故答案为 16数学课上,老师介绍了利用尺规确定残缺纸片圆心的方法小华对数学老师说: “我可以用拆叠纸片的方法确定圆心 ”小华的作法如下: 第一步:如图 1,将残缺的纸片对折,使 的端点 A 与端点 B 重合,得到图 2; 第二步:将图 2 继续对折,使 的端点 C 与端点 B 重合,得到图 3; 第三步:将对折后的图 3 打开如 图 4,两条折痕所在直线的交点即为圆心 O 老师肯定了他的作法那么他确定圆心的依据是 轴对称图形的性质及圆心到圆上各点的距离相等 【考点】 图 复杂作图; 径定理; 折变换(折叠问题) 【分析】 由圆心到圆上各点的距离相等知圆心在 中垂线上,再结合轴对称图形的性质知两条折痕即为 中垂线,从而得出答案 【解答】 解:如图, 第一步对折由轴对称图形可知 中垂线,点 O 在 垂线上; 第二步对折由轴对称图形可知 中垂线,点 O 在 垂线上; 从而得出点 O 在 垂线交点上, 故答案为:轴对称图形的性质及圆心到圆上各点的距离相等 第 17 页(共 29 页) 三、解答题(本题共 72 分,第 17,每小题 5 分,第 27 题 7 分,第 28 题7 分,第 29 题 8 分)解答应写出文字说明、演算步骤或证明过程 . 17计算: 3 【考点】 殊角的三角函数值 【分析】 根据特殊角三角函数值,可得答案 【解答】 解: 3 = = 18计算:( 3) 0+4 +|1 | 【考点】 2C:实数的运算; 6E:零指数幂; 殊角的三角函数值 【分析】 本题涉及零指数幂、特殊角的三角函数值、绝对值、二次根式化简 4个考点在计算时,需要针对每个考点分别进行计算,然后 根据实数的运算法则求得计算结果 【解答】 解: = =1+2 2 + 1 = 19已知 作 内切圆 【考点】 图 复杂作图; 角形的内切圆与内心 【分析】 圆心到各边的距离相等所以要作各角的角平分线的交点,交点就是圆的圆心,圆的半径是圆心到各边的距离 【解答】 解: 第 18 页(共 29 页) 20如图,四边形 四边形 接对角线 证 【考点】 似三角形的判定; 似多边形的性质 【分析】 根据四边形 四边形 似的性质, 得出对应边的必相等,对应角相等,从而得出 【解答】 证明: 四边形 四边形 , 21二次函数 y= 2m+1) x+1 与 x 轴交于 A, B 两个不同的点 ( 1)求 m 的取值范围; ( 2)写出一个满足条件的 m 的值,并求此时 A, B 两点的坐标 【考点】 物线与 x 轴的交点 【分析】 ( 1)根据二次函数与 x 轴有两个不同的交点结合根的判别式即可得出关于 m 的一元一次不等式,解之即可得出结论 ; ( 2)将 m=1 代入原函数解析式,令 y=0 求出 x 值,进而即可找出点 A、 B 的坐标,此题得解 【解答】 解:( 1) 二次函数 y= 2m+1) x+1 与 x 轴交于 A, B 两个不同的点, 一元二次方程 2m+1) x+1=0 有两个不相等的实数根, =( 2m+1) 2 4( 1) =4m+5 0, 第 19 页(共 29 页) 解得: m ( 2)当 m=1 时,原二次函数解析式为 y=x, 令 y=x=0, 解得: 3, , 当 m=1 时, A、 B 两点的坐标为( 3, 0)、( 0, 0) 22在平面直角坐标系 ,直线 y= x+1 与双曲线 y= 相交于点 A( m, 2) ( 1)求反比例函数的表达式; ( 2)画出直线和双曲线的示意图; ( 3)过动点 P( n, 0)且垂于 x 轴的直线与 y= x+1 及双曲线 y= 的交点分别为 B 和 C,当点 B 位于点 C 上方时,根据图形,直接写出 n 的取值范围 0 n 2, n 1 【考点】 比例函数与一次函数的交点 问题 【分析】 ( 1)根据直线上点的坐标特征求出 m,把点 A 的坐标代入反比例函数解析式,计算即可; ( 2)根据题意画出图象; ( 3)结合图象解答 【解答】 解( 1) 点 A( m, 2)在直线 y= x+1 上, m+1=2, 解得, m= 1, A( 1, 2), 点 A( 1, 2)在双曲线 y= 上, k= 2, 反比例函数的表达式为: y= ; ( 2)直线和双曲线的示意图如图所示: ( 3)由图象可知, 当 0 n 2, n 1 时,点 B 位于点 C 上方 第 20 页(共 29 页) 23如图, O 的直径 直弦 点 E, , A=求 长 【考点】 径定理 【分析】 根据圆周角定理得出 度数,在 ,由三角函数的定义得出 由垂径定理得出 可 【解答】 解: , A=4, A= A=45, 直径 直弦 E, , 24在数学活动课上,老师带领学生去测量操场上树立的旗杆的高度,老师为同学们准备了如下工具: 高为 m 米的测角仪, 长为 n 米的竹竿, 足够长的皮尺请你选用以上的工具,设计一个可以通过测量,求出国旗杆高度的方案(不用计算和说明,画出图形并标记可以测量的长度或者角度即可,可测量的角度选用 , , 标记,可测量的长度选用 a, b, c, d 标记,测角仪和竹竿可以用线段表示) 第 21 页(共 29 页) ( 1)你选 用的工具为: ;(填序号即可) ( 2)画出图形 【考点】 直角三角形的应用; 似三角形的应用 【分析】 ( 1)利用测角仪以及足够长的皮尺即可解决问题; ( 2)根据仰角的知识,确定测量方案,进而得出答案 【解答】 解:( 1)选用的工具为: ; 故答案为: ; ( 2)如图所示:可以量出 长,以及 , 的度数,即可得出 C 的长 25如图,在 , F 是 一点,以 直径的 O 切 点 D,交点 G, 于点 E ( 1)求证: ( 2)如果 , AO=a,请你写出求四边形 积的思路 第 22 页(共 29 页) 【考点】 线的性质; 直角三角形 【分析】 ( 1)根据切线的性质,可得 用平行线的性质可证得 C=90,由 直径,可得 0,进而可得 ( 2)先证 明四边形 矩形,再根据锐角三角函数、勾股定理求 E 的长,进而可求四边形 面积 【解答】 证明:( 1) O 切 点 D, C= 0, O 直径, 0= C, 解:( 2) 四边形 平行四边形, C=90, 四边形 矩形, , , a, OF=a, Fa = , F= = , 在 , = = , D OE=a = , S 四边形 E = 26有这样一个问题:探究函数 y= x 的图象与性质 第 23 页(共 29 页) 小东根据学习函数的经验,对函数 y= x 的图象与性质进行了探究 下面是小东的探究过程,请补充完整: ( 1)函数 y= x 的自变量 x 的取值范围是 x 0 ; ( 2)下表是 y 与 x 的几组对应值,求 m 的值; x 4 3 2 1 1 2 3 4 y m ( 3)如图,在平面直角坐标系 ,描出了以上表中各对对应值为坐标的点根据描出的点,画出该函数的图象; ( 4)进一步探究发现,该函数图象在第三象限内的最高点的坐标是( 2, ),结合函数的图象,写出该函数的其它性质(一条即可) 当 x 0 时, y 随 x 的增大而增大 【考点】 次函数的性质; 62:分式有意义的条件; 次函数的图象;次函数的最值 【分析】 ( 1)由分母不为 0,可得出自变量 x 的取值范围; ( 2)将 x=4 代入函数表达式中,即可求出 m 值; ( 3)连线,画出函数图象; ( 4)观察函数图象,找出函数性质 【解答】 解:( 1) 分母上, x 0 第 24 页(共 29 页) 故答案为: x 0 ( 2)当 x=4 时, m= x = 4 = ( 3)连线,画出函数图象,如图所示 ( 4)观察图象,可知:当 x 0 时, y 随 x 的增大而增大 故答案为:当 x 0 时, y 随 x 的增大而增大 27已知 :过点 A( 3, 0)直线 y=x+b 与直线 y= 2x 交于点 B抛物线y=bx+c 的顶点为 B ( 1)求点 B 的坐标; ( 2)如果抛物线 y=bx+c 经过点 A,求抛物线的表达式; ( 3)直线 x= 1 分别与直线 于 C, D 两点,当抛物线 y=bx+c 与线段交点时,求 a 的取值范围 【考点】 定系数法求二次函数解析式; 次函数的性质; 次函数图象上点的坐标特征; 次函数的三种形式 【分析】 ( 1)将点 A 的坐标代入直线 出其函数表达式,联立直线 达式成方程组,解方程组即可得出点 B 的坐标; ( 2)设抛物线 y=bx+c 的顶点式为 y=a( x h) 2+k,由抛物线的顶点坐标即可得出 y=a( x 1) 2 2,再根据点 C 的坐标利用待定系数法即可得出结论; ( 3)根据两直线相交,求出点 C、 D 的坐标,将其分别代入 y=a( x 1) 2 2 中求出 a 的值,由此即可得出抛物线 y=bx+c 与线段 交点时, a 的取值范围 第 25 页(共 29 页) 【解答】 解:( 1)将 A( 3, 0)代入直线 y=x+b 中, 0=3+b,解得: b= 3, 直线 y=x 3 联立直线 达式成方程组, ,解得: , 点 B 的坐标为( 1, 2) ( 2)设抛物线 y=bx+c 的顶点式为 y=a( x h) 2+k, 抛物线 y=bx+c 的顶点为 B( 1, 2), y=a( x 1) 2 2, 抛物线 y=bx+c 经过点 A, a( 3 1) 2 2=0,解得: a= , 抛物线的表达式为 y= ( x 1) 2 2 ( 3) 直线 x= 1 分别与直线 于 C、 D 两点, C、 D 两点的坐标分别为( 1, 4),( 1, 2), 当抛物线 y=bx+c 过点 C 时, a( 1 1) 2 2= 4, 解得: a= ; 当抛物线 y=bx+c 过点 D 时, a( 1 1) 2 2=2, 解得: a=1 当抛物线 y=bx+c 与线段 交点时, a 的取值范围为 a 1 且 a 0 28在等边 , E 是边 的一个动点(不与点 B, C 重合), 0, 角平分线 点 F ( 1)如图 1,当点 E 是 中点时,请你补全图形,直接写出 的值,并判断 数量关系; ( 2)当点 E 不是 中点时,请你在图(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论