




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
我带领班子成员及全体职工,积极参加县委、政府和农牧局组织的政治理论学习,同时认真学习业务知识,全面提高了自身素质,增强职工工作积极性,杜绝了纪律松散24.2抛物线的几何性质(一)学习目标1.了解抛物线的范围、对称性、顶点、焦点、准线等几何性质.2.会利用抛物线的性质解决一些简单的抛物线问题知识点一抛物线的几何性质思考1类比椭圆、双曲线的几何性质,结合图象,你能说出抛物线y22px(p0)的范围、对称性、顶点坐标吗?思考2参数p对抛物线开口大小有何影响?梳理标准方程y22px(p0)y22px(p0)x22py(p0)x22py(p0)图形性质范围对称轴顶点离心率e_知识点二焦点弦设过抛物线焦点的弦的端点为A(x1,y1),B(x2,y2),则:y22px(p0)ABx1x2py22px(p0)ABp(x1x2)x22py(p0)ABy1y2px22py(p0)ABp(y1y2)类型一由抛物线的几何性质求标准方程例1已知抛物线的焦点F在x轴上,直线l过F且垂直于x轴,l与抛物线交于A,B两点,O为坐标原点,若OAB的面积等于4,求此抛物线的标准方程引申探究等腰直角三角形AOB内接于抛物线y22px(p0),O为抛物线的顶点,OAOB,则AOB的面积是_反思与感悟用待定系数法求抛物线标准方程的步骤(1)定位置:根据条件确定抛物线的焦点在哪条坐标轴上及开口方向(2)设方程:根据焦点和开口方向设出标准方程(3)寻关系:根据条件列出关于p的方程(4)得方程:解方程,将p代入所设方程为所求跟踪训练1已知抛物线关于x轴对称,它的顶点在坐标原点,其上一点P到准线及对称轴的距离分别为10和6,求抛物线的方程类型二抛物线的焦点弦问题例2已知直线l经过抛物线y26x的焦点F,且与抛物线相交于A、B两点(1)若直线l的倾斜角为60,求AB的值;(2)若AB9,求线段AB的中点M到准线的距离反思与感悟(1)抛物线的焦半径定义抛物线的焦半径是指以抛物线上任意一点与抛物线焦点为端点的线段焦半径公式P(x0,y0)为抛物线上一点,F为焦点.若抛物线y22px(p0),则PFx0;若抛物线y22px(p0),则PFx0;若抛物线x22py(p0),则PFy0;若抛物线x22py(p0),则PFy0(2)过焦点的弦长的求解方法设过抛物线y22px(p0)焦点的弦的端点为A(x1,y1),B(x2,y2),则ABx1x2p.然后利用弦所在直线方程与抛物线方程联立,消元,由根与系数的关系求出x1x2即可跟踪训练2已知抛物线方程为y22px(p0),过此抛物线焦点的直线与抛物线交于A,B两点,且ABp,求AB所在直线的方程类型三抛物线在实际生活中的应用例3河上有一抛物线形拱桥,当水面距拱桥顶5 m时,水面宽为8 m,一小船宽4 m、高2 m,载货后船露出水面的部分为0.75 m,问:水面上涨到与抛物线拱桥拱顶相距多少米时,小船开始不能通航?反思与感悟涉及拱桥、隧道的问题,通常需建立适当的平面直角坐标系,利用抛物线的标准方程进行求解跟踪训练3如图,有一座抛物线型拱桥,桥下面在正常水位AB时宽20米,水位上升3米就达到警戒线CD,这时水面宽度为10米若洪水到来时,水位从警戒线开始以每小时0.2米的速度上升,再持续多少小时才能到拱桥顶?(平面直角坐标系是以桥顶点为原点O)1抛物线的顶点在原点,对称轴是x轴,抛物线上的点(5,2)到焦点的距离是6,则抛物线方程为_2顶点在坐标原点,对称轴为y轴,顶点到准线的距离为4的抛物线的标准方程是_3抛物线y2x上到其准线和顶点距离相等的点的坐标为_4过抛物线y24x的焦点作直线l交抛物线于A,B两点,若线段AB的中点的横坐标为3,则AB_.5对于顶点在原点的抛物线,给出下列条件:焦点在y轴上;焦点在x轴上;抛物线上横坐标为1的点到焦点的距离等于6;抛物线的通径的长为5;由原点向过焦点的某条直线作垂线,垂足坐标为(2,1)符合抛物线方程为y210x的条件是_(要求填写合适条件的序号)1讨论抛物线的几何性质,一定要利用抛物线的标准方程;利用几何性质,也可以根据待定系数法求抛物线的方程2抛物线中的最值问题:注意抛物线上的点到焦点的距离与点到准线的距离的转化,其次是平面几何知识的应用提醒:完成作业第2章2.42.4.2(一)答案精析问题导学知识点一思考1范围x0,关于x轴对称,顶点坐标(0,0)思考2参数p(p0)对抛物线开口大小的影响,因为过抛物线的焦点F且垂直于对称轴的弦的长度是2p,所以p越大,开口越大梳理x0,yRx0,yRxR,y0xR,y0x轴y轴(0,0)1题型探究例1解由题意设抛物线方程为y22mx(m0),焦点坐标为F(,0)直线l:x,所以A,B两点的坐标为(,m),(,m),所以AB2|m|.因为OAB的面积为4,所以|2|m|4,所以m2.所以抛物线的标准方程为y24x.引申探究4p2跟踪训练1解设抛物线的方程为y22ax(a0),点P(x0,y0)因为点P到对称轴距离为6,所以y06.因为点P到准线距离为10,所以|x0|10.因为点P在抛物线上,所以362ax0,由,得或或或所以所求抛物线的方程为y24x或y236x.例2解(1)因为直线l的倾斜角为60,所以其斜率为ktan 60.又F,所以直线l的方程为y. 联立消去y得x25x0.设A(x1,y1),B(x2,y2),则x1x25.而ABAFBFx1x2x1x2p,所以AB538.(2)设A(x1,y1),B(x2,y2)由抛物线定义知,ABAFBFx1x2x1x2px1x23,所以x1x26,所以线段AB的中点M的横坐标是3.又准线方程是x,所以M到准线的距离等于3.跟踪训练2解如图所示,抛物线y22px(p0)的准线方程为x,设A(x1,y1),B(x2,y2),A,B到准线的距离分别为dA,dB.由抛物线的定义知,AFdAx1,BFdBx2,于是ABx1x2pp,x1x2p.当x1x2时,AB2p0)由题意可知,点B(4,5)在抛物线上,故p,得x2y.当船面两侧和抛物线接触时,船不能通航,设此时船面宽为AA,则A(2,yA),由22yA,得yA.又知船面露出水面的部分为0.75 m,所以h|yA|0.752(m)所以水面上涨到与抛物线形拱桥拱顶相距2 m时,小船开始不能通航跟踪训练3解设所求抛物线的方程为yax2.设D(5,b),则B(10,b3)把D、B的坐标分别代入yax2,得解得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现浇混凝土模板合同范本
- 村委会门面房合同协议书
- 能不能撤销手写合同协议
- 附带家具的装修合同范本
- 汽车修理部转租合同协议
- 终止保险经纪合作协议书
- 电商平台宣传活动协议书
- 清华烟台大学合作协议书
- 税务代理合同协议书范本
- 法人变更合同协议书模板
- 品质培训课件模板
- 2025至2030中国GPU芯片行业市场发展现状调研及竞争格局与产业运行态势及投资规划深度研究报告
- 佛教寺院各项管理制度
- 供水公司维修管理制度
- 宁城职教中心实习实训基地项目可行性论证报告
- 海底捞服务管理制度
- 公司家属开放日活动方案
- DB14-T 3403-2025 灌木林地造林技术规程
- 2025广西中医药大学赛恩斯新医药学院教师招聘考试试题
- 密码测评安全管理制度
- JG/T 405-2013住宅内用成品楼梯
评论
0/150
提交评论