已阅读5页,还剩44页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第五模块平面向量 第二十三讲 平面向量的概念及线性运算 回归课本 1.向量的概念 (1)把既有大小又有方向的量叫做向量. (2)把只有大小,没有方向的量(如年龄身高长度面积体积 质量等),称为数量. (3)向量的大小叫做向量的长度(或模).长度为零的向量叫零向 量,记作0,零向量的方向任意,规定零向量与任意向量平行( 共线). (4)相等向量是指大小相等,方向相同的向量;相反向量是指大 小相等,方向相反的向量,规定零向量的相等向量是0,零向 量的相反向量是0. (5)方向相同或相反的向量叫平行向量,也叫共线向量.长度为1 的向量叫做单位向量. 2.向量的线性运算 (1)向量加法的定义 已知向量ab,如图,平面内任取一点A,作 b,再作 则 叫做a与b的和,记作a+b. 即 求两个向量和的运算叫做向量的 加法. (2)向量求和的三角形法则 利用向量加法的定义求两个向量和的作图法则,叫做向量求和 的三角形法则.在运用此法则时,要注意“首尾相接”,即两 个向量的和向量是从第一个向量的起点指向第二个向量终 点的向量. (3)向量求和的平行四边形法则 已知两个不共线向量ab,作 对ABD三点 不共线,以ABAD为邻边作平行四边形ABCD,则对角线上 的向量是 =a+b,这个法则叫做两向量求和的平行四 边形法则. (4)向量的减法 向量a加上向量b的相反向量叫做a与b的差,记作a-b,若 则 (5)实数与向量积的定义: 实数与向量a的积是一个向量,记作a,|a|=|a|,当0时 ,a与a方向相同;0时,a的方向与a的方向相同; 当0时,a的方向与a的方向相反;当=0时,a=0.由此可 见,总有a与a平行;(2)运算律 :(ua)=(u)a,(+u)a=a+ua,(a+b)=a+b. 反思感悟在求向量时要尽可能转化到平行四边形或三角形 中,选用从同一顶点发现的基本向量或首尾相连的向量,运 用向量加、减法运算及数乘运算来求解,即充分利用相等 向量、相反向量和线段的比例关系,运用三角形、平行四 边形法则,充分利用三角形中的中位线,相似三角形对应边 成比例的平面几何的性质,把未知向量转化为与已知向量 有直接关系的向量来求解. 类型三数乘向量与共线向量定理的应用 解题准备:(1)向量共线是指存在实数使两向量互相表示. (2)向量共线的充要条件中,通常只有非零向量才能表示与之 共线的其他向量,要注意待定系数法的运用和方程思想. (3)证明三点共线问题,可用向量共线来解决,但应注意向量共 线与三点共线的区别与联系,当两向量共线且有公共点时, 才能得出三点共线. (2)ka+b与a+kb共线, 存在实数,使ka+b=(a+kb), 即ka+b=a+kb. (k-)a=(k-1)b. a、b是不共线的两个非零向量. k-=k-1=0,k2-1=0. k=1. 反思感悟(1)向量共线的充要条件中要注意当两向量共线时 ,通常只有非零向量才能表示与之共线的其他向量,要注意 待定系数法的运用和方程思想. (2)证明三点共线问题,可用向量共线来解决,但应注意向量共 线与三点共线的区别与联系,当两向量共线且有公共点时, 才能得到三点共线. 错源一忽视零向量性质致误 【典例1】下列叙述错误的是_. 若ab,bc,则ac; 若非零向量a与b方向相同或相反,则a+b与a、b之一的方向 相同; |a|+|b|=|a+b| a与b方向相同; 向量b与向量a共线的充要条件是有且只有一个实数,使得 b=a; 若a=b,则a=b. 剖析忽视零向量的特殊性是本题出错的主要原因,本题前四 个结论都与此有关;另外两个相反向量的和是一个零向量, 不是实数零;最后一个结论可能忽视了=0的情况. 正解这六个命题都是错误的,因为对于,当b=0,a不一定与 c平行; 对于,当a+b=0时,其方向任意,它与a、b的方向都不相同; 对于,当a、b之一为零向量时结论不成立; 对于,当a=0,且b=0,有无数个值;当a=0但b0,不存在. 对于,由于两个向量之和得到的仍是一个向量,所以 对于,当=0时,不管a与b的大小与方向如何,都有a=b,此 时不一定有a=b. 答案 评析零向量的特殊性 零向量是向量中最特殊的向量,规定零向量的长度为0,其方向 是任意的,零向量与任意向量都共线.它在向量中的位置正 如实数中0的位置一样,但有了它容易引起一些混淆,稍微考 虑不到就会出错,考生应给予足够的重视. 错源二错用实数运算律或运算法则 错解|a+b+c|=|a|+|b|+|c|= 剖析上述解法受实数运算律和运算法则的影响致错. 答案4 技法一数形结合思想 【典例1】已知任意四边形ABCD,O为其内部一点,且满足 试确定该点的位置. 解题切入点条件中涉及四个向量的和的问题,为了利用向量 的加法法则,我们可把四个向量之和的问题,转化为向量两 两相加的情形来解决. 解点O是四边形ABCD对边中点连线的交点,证明如下: 如图,以OA、OD为邻边作 AODE,设OE与AD交于I;以OB、 OC为邻边作 BOCF,设OF与BC交于J,于是I、J分别是 AD与BC的中点. 技法二分类讨论思想 【典例2】已知向量a、b,求作向量c,使a+b+c=0,表示a、b、 c的有向线段能构成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025下半年四川雅安市赴外招才引智需求计划表(荥经县企业)笔试考试备考试题及答案解析
- 2025广西玉林市福绵区社会保险事业管理中心招聘见习生2人笔试考试备考题库及答案解析
- 2025江西赣州城投下属子公司招聘1人笔试考试备考试题及答案解析
- 2025甘肃省公路交通建设集团有限公司社会招聘132人笔试考试备考题库及答案解析
- 2025广东梅州丰顺县纪委监委(县委巡察机构)选调公务员3人笔试考试参考题库及答案解析
- 感恩奋进 演讲稿
- 2025浙江绍兴市中等专业学校合同制人员招聘2人考试笔试备考试题及答案解析
- 儿童一分钟英语演讲稿
- 2026山东中医药大学附属医院招聘第一批博士研究生工作人员53人考试笔试参考题库附答案解析
- 2024年黔西南州晴隆县公费师范毕业生和优师计划毕业生招聘考试真题
- 第九章-牙龈病
- 初中记叙文评价表
- 吴阶平医学基金会科研专项资助基金中期报告(通用模板)
- GBZ(卫生) 112-2017职业性放射性疾病诊断总则
- GB/T 29321-2012光伏发电站无功补偿技术规范
- FZ/T 73002-2016针织帽
- 贝加尔湖畔(简谱 SSA三部合唱谱)
- 金属活动性顺序说课(李利)
- 新概念英语1一课一练全册1-144课
- 2017公路工程试验检测项目参数检验频率一览表
- 语文核心素养课件
评论
0/150
提交评论