已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广阳区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 如图是某工厂对一批新产品长度(单位:mm)检测结果的频率分布直方图估计这批产品的中位数为( )A20B25C22.5D22.752 已知等比数列an的公比为正数,且a4a8=2a52,a2=1,则a1=( )AB2CD3 设函数是的导数.某同学经过探究发现,任意一个三次函数都有对称中心,其中满足.已知函数,则( )A B C D11114 定义运算:例如,则函数的值域为( )A B C D5 已知命题且是单调增函数;命题,.则下列命题为真命题的是( )A B C. D6 如图,在四棱锥PABCD中,PA平面ABCD,底面ABCD是菱形,AB=2,BAD=60()求证:BD平面PAC;()若PA=AB,求PB与AC所成角的余弦值;()当平面PBC与平面PDC垂直时,求PA的长【考点】直线与平面垂直的判定;点、线、面间的距离计算;用空间向量求直线间的夹角、距离7 沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为( )ABCD8 空间直角坐标系中,点A(2,1,3)关于点B(1,1,2)的对称点C的坐标为( )A(4,1,1)B(1,0,5)C(4,3,1)D(5,3,4)9 设函数f(x)在x0处可导,则等于( )Af(x0)Bf(x0)Cf(x0)Df(x0)10如图,正方体ABCDA1B1C1D1的棱线长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是( )AACBEBEF平面ABCDC三棱锥ABEF的体积为定值D异面直线AE,BF所成的角为定值11如图,三行三列的方阵中有9个数aij(i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )ABCD12某个几何体的三视图如图所示,其中正(主)视图中的圆弧是半径为2的半圆,则该几何体的表面积为( )2A B C D【命题意图】本题考查三视图的还原以及特殊几何体的面积度量.重点考查空间想象能力及对基本面积公式的运用,难度中等.二、填空题13函数y=lgx的定义域为14=15已知点M(x,y)满足,当a0,b0时,若ax+by的最大值为12,则+的最小值是16已知点A(2,0),点B(0,3),点C在圆x2+y2=1上,当ABC的面积最小时,点C的坐标为17考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于18(本小题满分12分)点M(2pt,2pt2)(t为常数,且t0)是拋物线C:x22py(p0)上一点,过M作倾斜角互补的两直线l1与l2与C的另外交点分别为P、Q.(1)求证:直线PQ的斜率为2t;(2)记拋物线的准线与y轴的交点为T,若拋物线在M处的切线过点T,求t的值三、解答题19【南师附中2017届高三模拟二】如下图扇形是一个观光区的平面示意图,其中为,半径为,为了便于游客观光休闲,拟在观光区内铺设一条从入口到出口的观光道路,道路由圆弧、线段及线段组成其中在线段上,且,设(1)用表示的长度,并写出的取值范围;(2)当为何值时,观光道路最长?20设定义在(0,+)上的函数f(x)=,g(x)=,其中nN*()求函数f(x)的最大值及函数g(x)的单调区间;()若存在直线l:y=c(cR),使得曲线y=f(x)与曲线y=g(x)分别位于直线l的两侧,求n的最大值(参考数据:ln41.386,ln51.609)21已知复数z的共轭复数是,且复数z满足:|z1|=1,z0,且z在复平面上对应的点在直线y=x上求z及z的值22(本小题满分12分)已知等差数列满足:(),该数列的前三项分别加上1,1,3后成等比数列,且.(1)求数列,的通项公式;(2)求数列的前项和.23已知函数f(x)=x3+x(1)判断函数f(x)的奇偶性,并证明你的结论;(2)求证:f(x)是R上的增函数;(3)若f(m+1)+f(2m3)0,求m的取值范围(参考公式:a3b3=(ab)(a2+ab+b2)24(本小题12分)设是等差数列,是各项都为正数的等比数列,且,.111(1)求,的通项公式;(2)求数列的前项和.广阳区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】解:根据频率分布直方图,得;0.025+0.045=0.30.5,0.3+0.085=0.70.5;中位数应在2025内,设中位数为x,则0.3+(x20)0.08=0.5,解得x=22.5;这批产品的中位数是22.5故选:C【点评】本题考查了利用频率分布直方图求数据的中位数的应用问题,是基础题目2 【答案】D【解析】解:设等比数列an的公比为q,则q0,a4a8=2a52,a62=2a52,q2=2,q=,a2=1,a1=故选:D3 【答案】D【解析】 ,故选D. 1考点:1、转化与划归思想及导数的运算;2、函数对称的性质及求和问题.【方法点睛】本题通过 “三次函数都有对称中心”这一探索性结论考查转化与划归思想及导数的运算、函数对称的性质及求和问题,属于难题.遇到探索性结论问题,应耐心读题,分析新结论的特点,弄清新结论的性质,按新结论的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答就是根据新结论性质求出的对称中心后再利用对称性和的.第卷(非选择题共90分)4 【答案】D【解析】考点:1、分段函数的解析式;2、三角函数的最值及新定义问题. 5 【答案】D 【解析】考点:1、指数函数与三角函数的性质;2、真值表的应用.6 【答案】 【解析】解:(I)证明:因为四边形ABCD是菱形,所以ACBD,又因为PA平面ABCD,所以PABD,PAAC=A所以BD平面PAC(II)设ACBD=O,因为BAD=60,PA=AB=2,所以BO=1,AO=OC=,以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系Oxyz,则P(0,2),A(0,0),B(1,0,0),C(0,0)所以=(1,2),设PB与AC所成的角为,则cos=|(III)由(II)知,设,则设平面PBC的法向量=(x,y,z)则=0,所以令,平面PBC的法向量所以,同理平面PDC的法向量,因为平面PBC平面PDC,所以=0,即6+=0,解得t=,所以PA=【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力7 【答案】A【解析】解:由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故D不正确;中间的棱在侧视图中表现为一条对角线,故C不正确;而对角线的方向应该从左上到右下,故B不正确故A选项正确故选:A【点评】本题考查的知识点是简单空间图象的三视图,其中熟练掌握简单几何体的三视图的形状是解答此类问题的关键8 【答案】C【解析】解:设C(x,y,z),点A(2,1,3)关于点B(1,1,2)的对称点C,解得x=4,y=3,z=1,C(4,3,1)故选:C9 【答案】C【解析】解: =f(x0),故选C【点评】本题考查了导数的几何意义,以及导数的极限表示形式,本题属于中档题10【答案】 D【解析】解:在正方体中,ACBD,AC平面B1D1DB,BE平面B1D1DB,ACBE,故A正确;平面ABCD平面A1B1C1D1,EF平面A1B1C1D1,EF平面ABCD,故B正确;EF=,BEF的面积为定值EF1=,又AC平面BDD1B1,AO为棱锥ABEF的高,三棱锥ABEF的体积为定值,故C正确;利用图形设异面直线所成的角为,当E与D1重合时sin=,=30;当F与B1重合时tan=,异面直线AE、BF所成的角不是定值,故D错误;故选D11【答案】 D【解析】古典概型及其概率计算公式【专题】计算题;概率与统计【分析】利用间接法,先求从9个数中任取3个数的取法,再求三个数分别位于三行或三列的情况,即可求得结论【解答】解:从9个数中任取3个数共有C93=84种取法,三个数分别位于三行或三列的情况有6种;所求的概率为=故选D【点评】本题考查计数原理和组合数公式的应用,考查概率的计算公式,直接解法较复杂,采用间接解法比较简单12【答案】二、填空题13【答案】x|x0 【解析】解:对数函数y=lgx的定义域为:x|x0故答案为:x|x0【点评】本题考查基本函数的定义域的求法14【答案】2 【解析】解: =2+lg1002=2+22=2,故答案为:2【点评】本题考查了对数的运算性质,属于基础题15【答案】4 【解析】解:画出满足条件的平面区域,如图示:,由,解得:A(3,4),显然直线z=ax+by过A(3,4)时z取到最大值12,此时:3a+4b=12,即+=1,+=(+)(+)=2+2+2=4,当且仅当3a=4b时“=”成立,故答案为:4【点评】本题考查了简单的线性规划,考查了利用基本不等式求最值,解答此题的关键是对“1”的灵活运用,是基础题16【答案】(,) 【解析】解:设C(a,b)则a2+b2=1,点A(2,0),点B(0,3),直线AB的解析式为:3x+2y6=0如图,过点C作CFAB于点F,欲使ABC的面积最小,只需线段CF最短则CF=,当且仅当2a=3b时,取“=”,a=,联立求得:a=,b=,故点C的坐标为(,)故答案是:(,)【点评】本题考查了圆的标准方程、点到直线的距离公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题17【答案】 【解析】解:从等边三角形的三个顶点及三边中点中随机的选择4个,共有=15种选法,其中4个点构成平行四边形的选法有3个,4个点构成平行四边形的概率P=故答案为:【点评】本题考查古典概型及其概率计算公式的应用,是基础题确定基本事件的个数是关键18【答案】【解析】解:(1)证明:l1的斜率显然存在,设为k,其方程为y2pt2k(x2pt)将与拋物线x22py联立得,x22pkx4p2t(kt)0,解得x12pt,x22p(kt),将x22p(kt)代入x22py得y22p(kt)2,P点的坐标为(2p(kt),2p(kt)2)由于l1与l2的倾斜角互补,点Q的坐标为(2p(kt),2p(kt)2),kPQ2t,即直线PQ的斜率为2t.(2)由y得y,拋物线C在M(2pt,2pt2)处的切线斜率为k2t.其切线方程为y2pt22t(x2pt),又C的准线与y轴的交点T的坐标为(0,)2pt22t(2pt)解得t,即t的值为.三、解答题19【答案】(1);(2)设当时,取得最大值,即当时,观光道路最长.【解析】试题分析:(1)在中,由正弦定理得:,(2)设观光道路长度为,则= = ,由得:,又列表:+0-极大值当时,取得最大值,即当时,观光道路最长.考点:本题考查了三角函数的实际运用点评:对三角函数的考试问题通常有:其一是考查三角函数的性质及图象变换,尤其是三角函数的最大值与最小值、周期。多数题型为选择题或填空题;其次是三角函数式的恒等变形。如运用三角公式进行化简、求值解决简单的综合题等。除在填空题和选择题出现外,解答题的中档题也经常出现这方面内容。另外,还要注意利用三角函数解决一些应用问题20【答案】 【解析】解:()函数f(x)在区间(0,+)上不是单调函数证明如下,令 f(x)=0,解得当x变化时,f(x)与f(x)的变化如下表所示:xf(x)+0f(x)所以函数f(x)在区间上为单调递增,区间上为单调递减所以函数f(x)在区间(0,+)上的最大值为f()=g(x)=,令g(x)=0,解得x=n当x变化时,g(x)与g(x)的变化如下表所示:x(0,n)n(n,+)g(x)0+g(x)所以g(x)在(0,n)上单调递减,在(n,+)上单调递增()由()知g(x)的最小值为g(n)=,存在直线l:y=c(cR),使得曲线y=f(x)与曲线y=g(x)分别位于直线l的两侧,即en+1nn1,即n+1(n1)lnn,当n=1时,成立,当n2时,lnn,即0,设h(n)=,n2,则h(n)是减函数,继续验证,当n=2时,3ln20,当n=3时,2ln30,当n=4时, ,当n=5时,ln51.60,则n的最大值是4【点评】本题考查了导数的综合应用及恒成立问题,同时考查了函数的最值的求法,属于难题21【答案】 【解析】解:z在复平面上对应的点在直线y=x上且z0,设z=a+ai,(a0),|z1|=1,|a1+ai|=1,即=1,则2a22a+1=1,即a2a=0,解得a=0(舍)或a=1,即z=1+i, =1i,则z=(1+i)(1i)=2【点评】本题主要考查复数的基本运算,利用复数的几何意义利用待定系数法是解决本题的关键22【答案】(1),;(2).【解析】试题分析:(1)设为等差数列的公差,且,利用数列的前三项分别加上后成等比数列,求出,然后求解;(2)写出利用错位相减法求和即可试题解析:解:(1)设为等差数列的公差,由,分别加上后成等比数列,111.Com所以 ,又 ,即 (6分)考点:数列的求和23【答案】 【解析】解:(1)f(x)是R上的奇函数证明:f(x)=x3x=(x3+x)=f(x),f(x)是R上的奇函数(2)设R上任意实数x1、x2满足x1x2,x1x20,f(x1)f(x2)=(x1x2)+(x1)3(x2)3=(x1x2)(x1)2+(x2)2+x1x2+1=(x1x2)(x1+x2)2+x22+10恒成立,因此得到函数f(x)是R上的增函数(3)f(m+1)+f(2m3)0,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年荆门辅警协警招聘考试备考题库及参考答案详解
- 2024年城口县辅警协警招聘考试备考题库附答案详解(a卷)
- 2024年哈密辅警协警招聘考试真题附答案详解(能力提升)
- 2023年绵阳辅警招聘考试真题含答案详解(a卷)
- 2023年邯郸辅警招聘考试题库有完整答案详解
- 2024年娄底辅警协警招聘考试备考题库及答案详解(全优)
- 2023年舟山辅警协警招聘考试备考题库附答案详解(b卷)
- 2024年安顺辅警协警招聘考试真题附答案详解
- 2024年九江辅警招聘考试真题带答案详解
- 2024年四平辅警协警招聘考试备考题库及答案详解(夺冠系列)
- 2025年教师时事政治题考点及完整答案
- 九小消防安全培训课件
- T-ZZB 2937-2022 推车式(干粉、水基)灭火器
- 作业设计讲解
- 学堂在线 人工智能原理 章节测试答案
- 心肺复苏急救步骤图例
- 网络安全知识竞赛试题(试题及答案)
- GB/T 40403-2021金属和合金的腐蚀用四点弯曲法测定金属抗应力腐蚀开裂的方法
- 低压配电要求
- 计量经济学(庞浩)第五章练习题参考解答
- 异辛烷安全技术说明书MSDS
评论
0/150
提交评论