已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
大姚县高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知函数f(x)=lg(1x)的值域为(,1,则函数f(x)的定义域为( )A9,+)B0,+)C(9,1)D9,1)2 以的焦点为顶点,顶点为焦点的椭圆方程为( )ABCD 3 已知集合( )A B C D【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力4 已知正ABC的边长为a,那么ABC的平面直观图ABC的面积为( )ABCD5 将函数(其中)的图象向右平移个单位长度,所得的图象经过点,则的最小值是( )A B C D 6 设双曲线焦点在y轴上,两条渐近线为,则该双曲线离心率e=( )A5BCD7 已知复数z满足:zi=1+i(i是虚数单位),则z的虚部为( )AiBiC1D18 设集合A=x|2x4,B=2,1,2,4,则AB=( )A1,2B1,4C1,2D2,49 在区域内任意取一点P(x,y),则x2+y21的概率是( )A0BCD10设偶函数f(x)满足f(x)=2x4(x0),则x|f(x2)0=( )Ax|x2或x4Bx|x0或x4Cx|x0或x6Dx|0x4 11数列an满足an+2=2an+1an,且a2014,a2016是函数f(x)=+6x1的极值点,则log2(a2000+a2012+a2018+a2030)的值是( )A2B3C4D512设函数,则有( )Af(x)是奇函数,Bf(x)是奇函数, y=bxCf(x)是偶函数Df(x)是偶函数,二、填空题13递增数列an满足2an=an1+an+1,(nN*,n1),其前n项和为Sn,a2+a8=6,a4a6=8,则S10=14设i是虚数单位,是复数z的共轭复数,若复数z=3i,则z=15若函数f(x)=x22x(x2,4),则f(x)的最小值是16【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系中,直线与函数和均相切(其中为常数),切点分别为和,则的值为_17如果直线3ax+y1=0与直线(12a)x+ay+1=0平行那么a等于18函数f(x)=log(x22x3)的单调递增区间为三、解答题19等差数列an的前n项和为Sn,已知a1=10,a2为整数,且SnS4。(1)求an的通项公式;(2)设bn=,求数列bn的前n项和Tn。20如图,三棱柱ABCA1B1C1中,侧面AA1C1C底面ABC,AA1=A1C=AC=2,AB=BC,且ABBC,O为AC中点()证明:A1O平面ABC;()求直线A1C与平面A1AB所成角的正弦值;()在BC1上是否存在一点E,使得OE平面A1AB,若不存在,说明理由;若存在,确定点E的位置 21已知等差数列an的首项和公差都为2,且a1、a8分别为等比数列bn的第一、第四项(1)求数列an、bn的通项公式;(2)设cn=,求cn的前n项和Sn22如图,在四棱锥PABCD中,底面ABCD是正方形,PA底面ABCD,且PA=AD,点F是棱PD的中点,点E为CD的中点(1)证明:EF平面PAC;(2)证明:AFEF23【常熟中学2018届高三10月阶段性抽测(一)】已知函数有一个零点为4,且满足.(1)求实数和的值;(2)试问:是否存在这样的定值,使得当变化时,曲线在点处的切线互相平行?若存在,求出的值;若不存在,请说明理由;(3)讨论函数在上的零点个数.24已知p:2x23x+10,q:x2(2a+1)x+a(a+1)0(1)若a=,且pq为真,求实数x的取值范围(2)若p是q的充分不必要条件,求实数a的取值范围大姚县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:函数f(x)=lg(1x)在(,1)上递减,由于函数的值域为(,1,则lg(1x)1,则有01x10,解得,9x1则定义域为9,1),故选D【点评】本题考查函数的值域和定义域问题,考查函数的单调性的运用,考查运算能力,属于基础题2 【答案】D【解析】解:双曲线的顶点为(0,2)和(0,2),焦点为(0,4)和(0,4)椭圆的焦点坐标是为(0,2)和(0,2),顶点为(0,4)和(0,4)椭圆方程为故选D【点评】本题考查双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭圆的基本性质3 【答案】D【解析】,故选D.4 【答案】D【解析】解:正ABC的边长为a,正ABC的高为,画到平面直观图ABC后,“高”变成原来的一半,且与底面夹角45度,ABC的高为=,ABC的面积S=故选D【点评】本题考查平面图形的直观图的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化5 【答案】D考点:由的部分图象确定其解析式;函数的图象变换6 【答案】C【解析】解:双曲线焦点在y轴上,故两条渐近线为 y=x,又已知渐近线为, =,b=2a,故双曲线离心率e=,故选C【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,判断渐近线的斜率=,是解题的关键7 【答案】D【解析】解:由zi=1+i,得,z的虚部为1故选:D【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题8 【答案】A【解析】解:集合A=x|2x4,B=2,1,2,4,则AB=1,2故选:A【点评】本题考查交集的运算法则的应用,是基础题9 【答案】C【解析】解:根据题意,如图,设O(0,0)、A(1,0)、B(1,1)、C(0,1),分析可得区域表示的区域为以正方形OABC的内部及边界,其面积为1;x2+y21表示圆心在原点,半径为1的圆,在正方形OABC的内部的面积为=,由几何概型的计算公式,可得点P(x,y)满足x2+y21的概率是=;故选C【点评】本题考查几何概型的计算,解题的关键是将不等式(组)转化为平面直角坐标系下的图形的面积,进而由其公式计算10【答案】D【解析】解:偶函数f(x)=2x4(x0),故它的图象关于y轴对称,且图象经过点(2,0)、(0,3),(2,0),故f(x2)的图象是把f(x)的图象向右平移2个单位得到的,故f(x2)的图象经过点(0,0)、(2,3),(4,0),则由f(x2)0,可得 0x4,故选:D【点评】本题主要考查指数不等式的解法,函数的图象的平移规律,属于中档题11【答案】C【解析】解:函数f(x)=+6x1,可得f(x)=x28x+6,a2014,a2016是函数f(x)=+6x1的极值点,a2014,a2016是方程x28x+6=0的两实数根,则a2014+a2016=8数列an中,满足an+2=2an+1an,可知an为等差数列,a2014+a2016=a2000+a2030,即a2000+a2012+a2018+a2030=16,从而log2(a2000+a2012+a2018+a2030)=log216=4故选:C【点评】熟练掌握利用导数研究函数的极值、等差数列的性质及其对数的运算法则是解题的关键12【答案】C【解析】解:函数f(x)的定义域为R,关于原点对称又f(x)=f(x),所以f(x)为偶函数而f()=f(x),故选C【点评】本题考查函数的奇偶性,属基础题,定义是解决该类问题的基本方法二、填空题13【答案】35 【解析】解:2an=an1+an+1,(nN*,n1),数列an为等差数列,又a2+a8=6,2a5=6,解得:a5=3,又a4a6=(a5d)(a5+d)=9d2=8,d2=1,解得:d=1或d=1(舍去)an=a5+(n5)1=3+(n5)=n2a1=1,S10=10a1+=35故答案为:35【点评】本题考查数列的求和,判断出数列an为等差数列,并求得an=2n1是关键,考查理解与运算能力,属于中档题14【答案】10 【解析】解:由z=3i,得z=故答案为:10【点评】本题考查公式,考查了复数模的求法,是基础题15【答案】0 【解析】解:f(x)=x22x=(x1)21,其图象开口向上,对称抽为:x=1,所以函数f(x)在2,4上单调递增,所以f(x)的最小值为:f(2)=2222=0故答案为:0【点评】本题考查二次函数在闭区间上的最值问题,一般运用数形结合思想进行处理16【答案】【解析】17【答案】 【解析】解:直线3ax+y1=0与直线(12a)x+ay+1=0平行,3aa=1(12a),解得a=1或a=,经检验当a=1时,两直线重合,应舍去故答案为:【点评】本题考查直线的一般式方程和平行关系,属基础题18【答案】(,1) 【解析】解:函数的定义域为x|x3或x1令t=x22x3,则y=因为y=在(0,+)单调递减t=x22x3在(,1)单调递减,在(3,+)单调递增由复合函数的单调性可知函数的单调增区间为(,1)故答案为:(,1)三、解答题19【答案】【解析】(1)由a1=10,a2为整数,且SnS4得a40,a50,即10+3d0,10+4d0,解得d,d=3,an的通项公式为an=133n。(2)bn=,Tn=b1+b2+bn=(+)=()=。20【答案】 【解析】解:()证明:因为A1A=A1C,且O为AC的中点,所以A1OAC又由题意可知,平面AA1C1C平面ABC,交线为AC,且A1O平面AA1C1C,所以A1O平面ABC()如图,以O为原点,OB,OC,OA1所在直线分别为x,y,z轴建立空间直角坐标系由题意可知,A1A=A1C=AC=2,又AB=BC,ABBC,所以得:则有:设平面AA1B的一个法向量为n=(x,y,z),则有,令y=1,得所以因为直线A1C与平面A1AB所成角和向量n与所成锐角互余,所以()设,即,得所以,得,令OE平面A1AB,得,即1+2=0,得,即存在这样的点E,E为BC1的中点【点评】本小题主要考查空间线面关系、直线与平面所成的角、三角函数等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力21【答案】 【解析】解:(1)由等差数列通项公式可知:an=2+(n1)2=2n,当n=1时,2b1=a1=2,b4=a8=16,3设等比数列bn的公比为q,则,4q=2,5 6(2)由(1)可知:log2bn+1=n79,cn的前n项和Sn,Sn=12【点评】本题考查等比数列及等差数列通项公式,等比数列性质,考查“裂项法”求数列的前n项和,考查计算能力,属于中档题22【答案】 【解析】(1)证明:如图,点E,F分别为CD,PD的中点,EFPCPC平面PAC,EF平面PAC,EF平面PAC(2)证明:PA平面ABCD,CD平面ABCD,又ABCD是矩形,CDAD,PAAD=A,CD平面PADAF平面PAD,AFCDPA=AD,点F是PD的中点,AFPD又CDPD=D,AF平面PDCEF平面PDC,AFEF【点评】本题考查了线面平行的判定,考查了由线面垂直得线线垂直,综合考查了学生的空间想象能力和思维能力,是中档题23【答案】(1);(2)答案见解析;(3)当或时,在有两个零点;当时,在有一个零点.【解析】试题分析:(1)由题意得到关于实数b,c的方程组,求解方程组可得; (3)函数的导函数,结合导函数的性质可得当或时,在有两个零点;当时,在有一个零点.试题解析:(1)由题意,解得;(2)由(1)可知,;假设存在满足题意,则是一个与无关的定值,即是一个与无关的定值,则,即,平行直线的斜率为;(3),其中,设两根为和,考察在上的单调性,如下表1当时,而,在和上各有一个零点,即在有两个零点;2当时,而,仅在上有一个零点,即在有一个零点;3当时,且,当时,则在和上各有一个零点,即在有两个零点;当时,则仅在上有一个零点,即在有一个零点;综上:当或时,在有两个零点;当时,在有一个零点.点睛:在解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年黄南州辅警协警招聘考试真题及参考答案详解
- 2024年唐山辅警协警招聘考试备考题库附答案详解(预热题)
- 武汉体育学院《人造板工艺学实验》2024-2025学年第一学期期末试卷
- 云南省文山州砚山县一中2025-2026学年数学高二第一学期期末统考试题含解析
- 新疆乌鲁木齐七十中2025-2026学年生物高一第一学期期末教学质量检测试题含解析
- 湖南省宁乡市2025-2026学年物理高二上期末联考模拟试题含解析
- 2025-2026学年陕西咸阳武功县普集高级中学生物高一上期末监测试题含解析
- 亳州职业技术学院《半导体器件物理含实验》2024-2025学年第一学期期末试卷
- 2025年上海市华二附中高二生物第一学期期末学业水平测试模拟试题含解析
- 河北民族师范学院《模式识别与机器学习》2024-2025学年第一学期期末试卷
- 直播中控培训课件
- 码头船舶调度管理制度
- 上市公司关务管理制度
- T-TBMA 13-2024 建筑保温与围护结构一体化复合保温外填充墙应用技术规程
- 精神康复项目管理制度
- 砂石拉运协议书
- 小学英语(新概念英语)一般现在时、一般将来时、现在进行时综合练习题1
- 北京开放大学2025年《企业统计》形考作业1答案
- 【《基于近五年数据的金种子酒营运资金管理研究》13000字】
- 职业技术学院智慧旅游技术应用专业人才培养方案
- 临床技术操作规范麻醉学分册
评论
0/150
提交评论