




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
宝安区三中2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 设集合是三角形的三边长,则所表示的平面区域是( ) A B C D2 已知函数,其中,对任意的都成立,在1和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为,则( )A B C D3 已知a,b都是实数,那么“a2b2”是“ab”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件4 在ABC中,b=,c=3,B=30,则a=( )AB2C或2D25 曲线y=x33x2+1在点(1,1)处的切线方程为( )Ay=3x4By=3x+2Cy=4x+3Dy=4x56 已知函数f(x)=2ax33x2+1,若 f(x)存在唯一的零点x0,且x00,则a的取值范围是( )A(1,+)B(0,1)C(1,0)D(,1)7 如图,在四棱锥PABCD中,PA平面ABCD,底面ABCD是菱形,AB=2,BAD=60()求证:BD平面PAC;()若PA=AB,求PB与AC所成角的余弦值;()当平面PBC与平面PDC垂直时,求PA的长【考点】直线与平面垂直的判定;点、线、面间的距离计算;用空间向量求直线间的夹角、距离8 已知命题p:存在x00,使21,则p是( )A对任意x0,都有2x1B对任意x0,都有2x1C存在x00,使21D存在x00,使219 若复数在复平面内对应的点关于轴对称,且,则复数在复平面内对应的点在( )A第一象限 B第二象限 C第三象限 D第四象限【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力10已知,则的大小关系是( )A B C D11已知等比数列an的前n项和为Sn,若=4,则=( )A3B4CD1312已知P(x,y)为区域内的任意一点,当该区域的面积为4时,z=2xy的最大值是( )A6B0C2D2二、填空题13已知点A(2,0),点B(0,3),点C在圆x2+y2=1上,当ABC的面积最小时,点C的坐标为14阅读如图所示的程序框图,运行相应的程序,若输入的X的值为2,则输出的结果是15已知点A的坐标为(1,0),点B是圆心为C的圆(x1)2+y2=16上一动点,线段AB的垂直平分线交BC与点M,则动点M的轨迹方程为 16当时,函数的图象不在函数的下方,则实数的取值范围是_【命题意图】本题考查函数图象间的关系、利用导数研究函数的单调性,意在考查等价转化能力、逻辑思维能力、运算求解能力17下列命题:终边在y轴上的角的集合是a|a=,kZ;在同一坐标系中,函数y=sinx的图象和函数y=x的图象有三个公共点;把函数y=3sin(2x+)的图象向右平移个单位长度得到y=3sin2x的图象;函数y=sin(x)在0,上是减函数其中真命题的序号是18抛物线y=x2的焦点坐标为( )A(0,)B(,0)C(0,4)D(0,2)三、解答题19(本题满分15分)如图,已知长方形中,为的中点,将沿折起,使得平面平面(1)求证:;(2)若,当二面角大小为时,求的值【命题意图】本题考查空间点、线、面位置关系,二面角等基础知识,意在考查空间想象能力和运算求解能力20已知数列an是各项均为正数的等比数列,满足a3=8,a3a22a1=0()求数列an的通项公式()记bn=log2an,求数列anbn的前n项和Sn21如图,在四棱锥PABCD中,ADBC,ABAD,ABPA,BC=2AB=2AD=4BE,平面PAB平面ABCD,()求证:平面PED平面PAC;()若直线PE与平面PAC所成的角的正弦值为,求二面角APCD的平面角的余弦值22在锐角三角形ABC中,内角A,B,C所对的边分别为a,b,c,且2csinA=a(1)求角C的大小;(2)若c=2,a2+b2=6,求ABC的面积23某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:40,50),50,60),90,100)后得到如图的频率分布直方图()求图中实数a的值;()根据频率分布直方图,试估计该校高一年级学生其中考试数学成绩的平均数;()若从样本中数学成绩在40,50)与90,100两个分数段内的学生中随机选取2名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率24(本题满分15分)若数列满足:(为常数, ),则称为调和数列,已知数列为调和数列,且,.(1)求数列的通项; (2)数列的前项和为,是否存在正整数,使得?若存在,求出的取值集合;若不存在,请说明理由.【命题意图】本题考查数列的通项公式以及数列求和基础知识,意在考查运算求解能力.宝安区三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】A【解析】考点:二元一次不等式所表示的平面区域.2 【答案】C【解析】试题分析:因为函数,对任意的都成立,所以,解得或,又因为,所以,在和两数间插入共个数,使之与,构成等比数列,两式相乘,根据等比数列的性质得,故选C. 考点:1、不等式恒成立问题;2、等比数列的性质及倒序相乘的应用.3 【答案】D【解析】解:“a2b2”既不能推出“ab”;反之,由“ab”也不能推出“a2b2”“a2b2”是“ab”的既不充分也不必要条件故选D4 【答案】C【解析】解:b=,c=3,B=30,由余弦定理b2=a2+c22accosB,可得:3=9+a23,整理可得:a23a+6=0,解得:a=或2故选:C5 【答案】B【解析】解:点(1,1)在曲线上,y=3x26x,y|x=1=3,即切线斜率为3利用点斜式,切线方程为y+1=3(x1),即y=3x+2故选B【点评】考查导数的几何意义,该题比较容易6 【答案】D【解析】解:若a=0,则函数f(x)=3x2+1,有两个零点,不满足条件若a0,函数的f(x)的导数f(x)=6ax26x=6ax(x),若 f(x)存在唯一的零点x0,且x00,若a0,由f(x)0得x或x0,此时函数单调递增,由f(x)0得0x,此时函数单调递减,故函数在x=0处取得极大值f(0)=10,在x=处取得极小值f(),若x00,此时还存在一个小于0的零点,此时函数有两个零点,不满足条件若a0,由f(x)0得x0,此时函数递增,由f(x)0得x或x0,此时函数单调递减,即函数在x=0处取得极大值f(0)=10,在x=处取得极小值f(),若存在唯一的零点x0,且x00,则f()0,即2a()33()2+10,()21,即10,解得a1,故选:D【点评】本题主要考查函数零点的应用,求函数的导数,利用导数和极值之间的关系是解决本题的关键注意分类讨论7 【答案】 【解析】解:(I)证明:因为四边形ABCD是菱形,所以ACBD,又因为PA平面ABCD,所以PABD,PAAC=A所以BD平面PAC(II)设ACBD=O,因为BAD=60,PA=AB=2,所以BO=1,AO=OC=,以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系Oxyz,则P(0,2),A(0,0),B(1,0,0),C(0,0)所以=(1,2),设PB与AC所成的角为,则cos=|(III)由(II)知,设,则设平面PBC的法向量=(x,y,z)则=0,所以令,平面PBC的法向量所以,同理平面PDC的法向量,因为平面PBC平面PDC,所以=0,即6+=0,解得t=,所以PA=【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力8 【答案】A【解析】解:命题p:存在x00,使21为特称命题,p为全称命题,即对任意x0,都有2x1故选:A9 【答案】B【解析】10【答案】B【解析】试题分析:函数在R上单调递减,所以,且,而,所以。故选B。考点:指数式比较大小。11【答案】D【解析】解:Sn为等比数列an的前n项和,=4,S4,S8S4,S12S8也成等比数列,且S8=4S4,(S8S4)2=S4(S12S8),即9S42=S4(S124S4),解得=13故选:D【点评】熟练掌握等比数列的性质是解题的关键是基础的计算题12【答案】A 解析:解:由作出可行域如图,由图可得A(a,a),B(a,a),由,得a=2A(2,2),化目标函数z=2xy为y=2xz,当y=2xz过A点时,z最大,等于22(2)=6故选:A二、填空题13【答案】(,) 【解析】解:设C(a,b)则a2+b2=1,点A(2,0),点B(0,3),直线AB的解析式为:3x+2y6=0如图,过点C作CFAB于点F,欲使ABC的面积最小,只需线段CF最短则CF=,当且仅当2a=3b时,取“=”,a=,联立求得:a=,b=,故点C的坐标为(,)故答案是:(,)【点评】本题考查了圆的标准方程、点到直线的距离公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题14【答案】3 【解析】解:分析如图执行框图,可知:该程序的作用是计算分段函数f(x)=的函数值当x=2时,f(x)=122=3故答案为:3【点评】本题主要考查了选择结构、流程图等基础知识,算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视15【答案】=1【解析】解:由题意得,圆心C(1,0),半径等于4,连接MA,则|MA|=|MB|,|MC|+|MA|=|MC|+|MB|=|BC|=4|AC|=2,故点M的轨迹是:以A、C为焦点的椭圆,2a=4,即有a=2,c=1,b=,椭圆的方程为=1故答案为: =1【点评】本题考查用定义法求点的轨迹方程,考查学生转化问题的能力,属于中档题16【答案】【解析】由题意,知当时,不等式,即恒成立令,令,在为递减,在为递增,则17【答案】 【解析】解:、终边在y轴上的角的集合是a|a=,kZ,故错误;、设f(x)=sinxx,其导函数y=cosx10,f(x)在R上单调递减,且f(0)=0,f(x)=sinxx图象与轴只有一个交点f(x)=sinx与y=x 图象只有一个交点,故错误;、由题意得,y=3sin2(x)+=3sin2x,故正确;、由y=sin(x)=cosx得,在0,上是增函数,故错误故答案为:【点评】本题考查的知识点是命题的真假判断及其应用,终边相同的角,正弦函数的性质,图象的平移变换,及三角函数的单调性,熟练掌握上述基础知识,并判断出题目中4个命题的真假,是解答本题的关键18【答案】D【解析】解:把抛物线y=x2方程化为标准形式为x2=8y,焦点坐标为(0,2)故选:D【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键三、解答题19【答案】(1)详见解析;(2).【解析】(1)由于,则, 又平面平面,平面平面,平面,平面,3分又平面,有;6分20【答案】 【解析】解:()设数列an的公比为q,由an0可得q0,且a3a22a1=0,化简得q2q2=0,解得q=2或q=1(舍),a3=a1q2=4a1=8,a1=2,数列an是以首项和公比均为2的等比数列,an=2n;()由(I)知bn=log2an=n,anbn=n2n,Sn=121+222+323+(n1)2n1+n2n,2Sn=122+223+(n2)2n1+(n1)2n+n2n+1,两式相减,得Sn=21+22+23+2n1+2nn2n+1,Sn=n2n+1,Sn=2+(n1)2n+1【点评】本题考查等比数列的通项公式,错位相减法求和等基础知识,考查推理论证能力、运算求解能力、数据处理能力,考查函数与方程思想、化归与转化思想,注意解题方法的积累,属于中档题21【答案】 【解析】解:()平面PAB平面ABCD,平面PAB平面ABCD=AB,ABPAPA平面ABCD结合ABAD,可得分别以AB、AD、AP为x轴、y轴、z轴,建立空间直角坐标系oxyz,如图所示可得A(0,0,0)D(0,2,0),E(2,1,0),C(2,4,0),P(0,0,) (0),得,DEAC且DEAP,AC、AP是平面PAC内的相交直线,ED平面PACED平面PED平面PED平面PAC()由()得平面PAC的一个法向量是,设直线PE与平面PAC所成的角为,则,解之得=20,=2,可得P的坐标为(0,0,2)设平面PCD的一个法向量为=(x0,y0,z0),由, ,得到,令x0=1,可得y0=z0=1,得=(1,1,1)cos,由图形可得二面角APCD的平面角是锐角,二面角APCD的平面角的余弦值为【点评】本题在四棱锥中证明面面垂直,并且在线面所成角的正弦情况下求二面角APCD的余弦值着重考查了线面垂直、面面垂直的判定定理和利用空间向量研究直线与平面所成角和二面角大小的方法,属于中档题22【答案】 【解析】(本小题满分10分)解:(1),2分在锐角ABC中,3分故sinA0,5分(2),6分,即ab=2,8分10分【点评】本题主要考查了正弦定理,特殊角的三角函数值,余弦定理,三角形的面积公式在解三角形中的应用,考查了转化思想,属于基础题23【答案】 【解析】解:()由频率分布直方图,得:10(0.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 红酒评鉴考试题及答案
- 荔城市工匠评选活动方案
- 自助洗衣活动方案
- 海洋经济考试题及答案
- 贵族分类考试题及答案
- 估算法考试题及答案
- 幼儿园教学教案设计:安全过斑马线
- 钢琴作品考试题及答案
- 市场营销活动效果评估分析框架
- 公益投入参与行为承诺书5篇
- 自动化模具制造行业可行性分析报告
- 房颤心电图课件
- 工地拌和站试验室培训课件建筑土木工程
- 2024年卫生院“健康促进医院”创建工作总结样本(3篇)
- 副总经理招聘面试题与参考回答(某大型集团公司)2025年
- 餐饮4D管理培训资料
- 国庆节磨豆腐活动方案
- 七年级上册生命、生态、安全教案全册
- 峥嵘岁月 课件-2024-2025学年高中音乐人音版(2019) 必修 音乐鉴赏
- 《用户体验设计导论》
- 税务法律服务行业分析报告及未来三年行业发展报告
评论
0/150
提交评论