已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷井陉矿区第二中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 函数是指数函数,则的值是( )A4 B1或3 C3 D12 已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)g(x)=x32x2,则f(2)+g(2)=( )A16B16C8D83 函数f(x)=1xlnx的零点所在区间是( )A(0,)B(,1)C(1,2)D(2,3)4 已知2a=3b=m,ab0且a,ab,b成等差数列,则m=( )ABCD65 空间直角坐标系中,点A(2,1,3)关于点B(1,1,2)的对称点C的坐标为( )A(4,1,1)B(1,0,5)C(4,3,1)D(5,3,4)6 已知向量=(1,n),=(1,n2),若与共线则n等于( )A1BC2D47 现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( )A232B252C472D4848 曲线y=在点(1,1)处的切线方程为( )Ay=x2By=3x+2Cy=2x3Dy=2x+19 “x0”是“x0”是的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件10给出下列结论:平行于同一条直线的两条直线平行;平行于同一条直线的两个平面平行;平行于同一个平面的两条直线平行;平行于同一个平面的两个平面平行其中正确的个数是( )A1个 B2个 C3个 D4个11德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f(x)=被称为狄利克雷函数,其中R为实数集,Q为有理数集,则关于函数f(x)有如下四个命题:f(f(x)=1;函数f(x)是偶函数;任取一个不为零的有理数T,f(x+T)=f(x)对任意的x=R恒成立;存在三个点A(x1,f(x1),B(x2,f(x2),C(x3,f(x3),使得ABC为等边三角形其中真命题的个数有( )A1个B2个C3个D4个12函数y=f(x)是函数y=f(x)的导函数,且函数y=f(x)在点p(x0,f(x0)处的切线为l:y=g(x)=f(x0)(xx0)+f(x0),F(x)=f(x)g(x),如果函数y=f(x)在区间a,b上的图象如图所示,且ax0b,那么( )AF(x0)=0,x=x0是F(x)的极大值点BF(x0)=0,x=x0是F(x)的极小值点CF(x0)0,x=x0不是F(x)极值点DF(x0)0,x=x0是F(x)极值点二、填空题13直线ax+by=1与圆x2+y2=1相交于A,B两点(其中a,b是实数),且AOB是直角三角形(O是坐标原点),则点P(a,b)与点(1,0)之间距离的最小值为14已知函数f(x)=sinxcosx,则=15已知函数,则的值是_,的最小正周期是_.【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力16函数()满足且在上的导数满足,则不等式的解集为 .【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.17长方体中,对角线与棱、所成角分别为、,则 18如图是一个正方体的展开图,在原正方体中直线AB与CD的位置关系是三、解答题19在ABC中,D为BC边上的动点,且AD=3,B=(1)若cosADC=,求AB的值;(2)令BAD=,用表示ABD的周长f(),并求当取何值时,周长f()取到最大值?20已知正项等差an,lga1,lga2,lga4成等差数列,又bn=(1)求证bn为等比数列(2)若bn前3项的和等于,求an的首项a1和公差d21已知命题p:x22x+a0在R上恒成立,命题q:若p或q为真,p且q为假,求实数a的取值范围22(本小题满分12分)已知向量满足:,.(1)求向量与的夹角;(2)求.23在平面直角坐标系xOy中己知直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是=4(1)写出直线l的普通方程与曲线C的直角坐标系方程;(2)直线l与曲线C相交于A、B两点,求AOB的值 24已知函数f(x)=|2x+1|+|2x3|()求不等式f(x)6的解集;()若关于x的不等式f(x)log2(a23a)2恒成立,求实数a的取值范围 井陉矿区第二中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】考点:指数函数的概念2 【答案】B【解析】解:f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)g(x)=x32x2,f(2)g(2)=(2)32(2)2=16即f(2)+g(2)=f(2)g(2)=16故选:B【点评】本题考查函数的奇函数的性质函数值的求法,考查计算能力3 【答案】C【解析】解:f(1)=10,f(2)=12ln2=ln0,函数f(x)=1xlnx的零点所在区间是(1,2)故选:C【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反4 【答案】C【解析】解:2a=3b=m,a=log2m,b=log3m,a,ab,b成等差数列,2ab=a+b,ab0,+=2,=logm2, =logm3,logm2+logm3=logm6=2,解得m=故选 C【点评】本题考查了指数与对数的运算的应用及等差数列的性质应用5 【答案】C【解析】解:设C(x,y,z),点A(2,1,3)关于点B(1,1,2)的对称点C,解得x=4,y=3,z=1,C(4,3,1)故选:C6 【答案】A【解析】解:向量=(1,n),=(1,n2),且与共线1(n2)=1n,解之得n=1故选:A7 【答案】 C【解析】【专题】排列组合【分析】不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有种取法,由此可得结论【解答】解:由题意,不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有种取法,故所求的取法共有=5601672=472故选C【点评】本题考查组合知识,考查排除法求解计数问题,属于中档题8 【答案】D【解析】解:y=()=,k=y|x=1=2l:y+1=2(x1),则y=2x+1故选:D9 【答案】B【解析】解:当x=1时,满足x0,但x0不成立当x0时,一定有x0成立,“x0”是“x0”是的必要不充分条件故选:B10【答案】B【解析】考点:空间直线与平面的位置关系【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与直线平行的判定与性质、直线与平面平行的判定与性质的应用,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直线与直线平行和直线与平面平行的判定与性质是解答的关键 11【答案】 D【解析】解:当x为有理数时,f(x)=1;当x为无理数时,f(x)=0当x为有理数时,f(f(x)=f(1)=1;当x为无理数时,f(f(x)=f(0)=1即不管x是有理数还是无理数,均有f(f(x)=1,故正确;有理数的相反数还是有理数,无理数的相反数还是无理数,对任意xR,都有f(x)=f(x),故正确; 若x是有理数,则x+T也是有理数; 若x是无理数,则x+T也是无理数根据函数的表达式,任取一个不为零的有理数T,f(x+T)=f(x)对xR恒成立,故正确; 取x1=,x2=0,x3=,可得f(x1)=0,f(x2)=1,f(x3)=0A(,0),B(0,1),C(,0),恰好ABC为等边三角形,故正确故选:D【点评】本题给出特殊函数表达式,求函数的值并讨论它的奇偶性,着重考查了有理数、无理数的性质和函数的奇偶性等知识,属于中档题12【答案】 B【解析】解:F(x)=f(x)g(x)=f(x)f(x0)(xx0)f(x0),F(x)=f(x)f(x0)F(x0)=0,又由ax0b,得出当axx0时,f(x)f(x0),F(x)0,当x0xb时,f(x)f(x0),F(x)0,x=x0是F(x)的极小值点故选B【点评】本题主要考查函数的极值与其导函数的关系,即当函数取到极值时导函数一定等于0,反之当导函数等于0时还要判断原函数的单调性才能确定是否有极值二、填空题13【答案】 【解析】解:AOB是直角三角形(O是坐标原点),圆心到直线ax+by=1的距离d=,即d=,整理得a2+2b2=2,则点P(a,b)与点Q(1,0)之间距离d=,点P(a,b)与点(1,0)之间距离的最小值为故答案为:【点评】本题主要考查直线和圆的位置公式的应用以及两点间的距离公式,考查学生的计算能力14【答案】 【解析】解:函数f(x)=sinxcosx=sin(x),则=sin()=,故答案为:【点评】本题主要考查两角差的正弦公式,属于基础题15【答案】,.【解析】,又,的定义域为,将的图象如下图画出,从而可知其最小正周期为,故填:,.16【答案】【解析】构造函数,则,说明在上是增函数,且.又不等式可化为,即,解得.不等式的解集为.17【答案】【解析】试题分析:以为斜边构成直角三角形:,由长方体的对角线定理可得:.考点:直线与直线所成的角【方法点晴】本题主要考查了空间中直线与直线所成的角的计算问题,其中解答中涉及到长方体的结构特征、直角三角形中三角函数的定义、长方体的对角线长公式等知识点的考查,着重考查学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直角三角形中三角函数的定义和长方体的对角线长定理是解答的关键18【答案】异面 【解析】解:把展开图还原原正方体如图,在原正方体中直线AB与CD的位置关系是异面故答案为:异面三、解答题19【答案】 【解析】(本小题满分12分)解:(1),2分(注:先算sinADC给1分),3分,5分(2)BAD=,6由正弦定理有,7分,8分,10分=,11分当,即时f()取到最大值912分【点评】本题主要考查了诱导公式,同角三角函数基本关系式,正弦定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想,属于中档题20【答案】 【解析】(1)证明:设an中首项为a1,公差为dlga1,lga2,lga4成等差数列,2lga2=lga1+lga4,a22=a1a4即(a1+d)2=a1(a1+3d),d=0或d=a1当d=0时,an=a1,bn=, =1,bn为等比数列;当d=a1时,an=na1,bn=, =,bn为等比数列综上可知bn为等比数列(2)解:当d=0时,S3=,所以a1=;当d=a1时,S3=,故a1=3=d【点评】本题主要考查等差数列与等比数列的综合以及分类讨论思想的应用,涉及数列的公式多,复杂多样,故应多下点功夫记忆21【答案】 【解析】解:若P是真命题则=44a0a1; (3分)若q为真命题,则方程x2+2ax+2a=0有实根,=4a24(2a)0,即,a1或a2,(6分)依题意得,当p真q假时,得a; (8分)当p假q真时,得a2(10分)综上所述:a的取值范围为a2(12分)【点评】本题考查复合函数的真假与构成其简单命题的真假的关系,解决此类问题应该先求出简单命题为真时参数的范围,属于基础题22【答案】(1);(2)【解析】试题分析:(1)要求向量的夹角,只要求得这两向量的数量积,而由已知,结合数量积的运算法则可得,最后数量积的定义可求得其夹角;(2)求向量的模,可利用公式,把考点:向量的数量积,向量的夹角与模【名师点睛】本题考查向量的数量积运算及特殊角的三角函数值,求解两个向量的夹角的步骤:第一步,先计算出两个向量的数量积;第二步,分别计算两个向量的模;第三步,根据公式求得这两个向量夹角的余弦值;第四步,根据向量夹角的范围在内及余弦值求出两向量的夹角23【答案】 【解析】解:(1)直线l的参数方程为(t为参数),直线l的普通方程为曲线C的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 在线学习服务师岗位设备技术规程
- 乙腈装置操作工冲突解决竞赛考核试卷含答案
- 玻璃制品手工成型工成果评优考核试卷含答案
- 居家养老服务免责协议书
- 河北省保定市唐县2023-2024学年五年级上学期语文期末调研试卷(含答案)
- 工业设备解耦控制安全运行准则
- 教育学的理论与实践
- 教育培训年度总结
- 《课件-市场营销学项目化教程》-2市场营销环境分析2
- 第十三章 三角形全章知识清单10个知识点(必考点分类集训)(人教版2024)(解析版)
- 化工车间安全操作题库及答案解析
- 2025 社会主义核心价值观人教版课件
- 癌痛全程管理中国专家共识(2025版)解读
- 2025年大庆肇源县上半年人才引进50人参考题库附答案解析
- 餐饮服务试题及答案2025年
- 边海防工作汇报
- 2025年郑州巩义市金桥融资担保有限公司公开招聘3名笔试考试备考试题及答案解析
- 2025铜陵市义安区城管局招聘编外聘用人员9人笔试考试参考试题及答案解析
- 故宫琉璃瓦课件
- 租地居间服务合同范本
- 情绪管理课件
评论
0/150
提交评论