




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
柘荣县高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 定义在R上的奇函数f(x),满足,且在(0,+)上单调递减,则xf(x)0的解集为( )ABCD2 已知函数,其中,为自然对数的底数当时,函数的图象不在直线的下方,则实数的取值范围( )ABCD【命题意图】本题考查函数图象与性质、利用导数研究函数的单调性、零点存在性定理,意在考查逻辑思维能力、等价转化能力、运算求解能力,以及构造思想、分类讨论思想的应用3 给出以下四个说法:绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;线性回归直线一定经过样本中心点,;设随机变量服从正态分布N(1,32)则p(1)=;对分类变量X与Y它们的随机变量K2的观测值k越大,则判断“与X与Y有关系”的把握程度越小其中正确的说法的个数是( )A1B2C3D44 已知三个数,成等比数列,其倒数重新排列后为递增的等比数列的前三项,则能使不等式成立的自然数的最大值为( )A9 B8 C.7 D55 已知函数f(x)=log2x,在下列区间中,包含f(x)零点的区间是( )A(0,1)B(1,2)C(2,4)D(4,+)6 是平面内不共线的两向量,已知,若三点共线,则的值是( )A1 B2 C-1 D-27 下面的结构图,总经理的直接下属是( )A总工程师和专家办公室B开发部C总工程师、专家办公室和开发部D总工程师、专家办公室和所有七个部8 设0a1,实数x,y满足,则y关于x的函数的图象形状大致是( )ABCD9 已知两条直线,其中为实数,当这两条直线的夹角在内变动时,的取值范围是( )A B C D10点集(x,y)|(|x|1)2+y2=4表示的图形是一条封闭的曲线,这条封闭曲线所围成的区域面积是( )ABCD11如图,正方体ABCDA1B1C1D1中,点E,F分别是AA1,AD的中点,则CD1与EF所成角为( )A0B45C60D9012在复平面内,复数(4+5i)i(i为虚数单位)的共轭复数对应的点位于( )A第一象限B第二象限C第三象限D第四象限二、填空题13抛物线y2=8x上到顶点和准线距离相等的点的坐标为14函数f(x)=loga(x1)+2(a0且a1)过定点A,则点A的坐标为15(x)6的展开式的常数项是(应用数字作答)16甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,则至少有一个红球的概率为 17函数在点处切线的斜率为 18设幂函数的图象经过点,则= 三、解答题19某实验室一天的温度(单位:)随时间(单位;h)的变化近似满足函数关系;(1) 求实验室这一天的最大温差;(2) 若要求实验室温度不高于,则在哪段时间实验室需要降温?20已知a,b,c分别为ABC三个内角A,B,C的对边,且满足2bcosC=2ac()求B; ()若ABC的面积为,b=2求a,c的值21已知函数f(x)=x1+(aR,e为自然对数的底数)()若曲线y=f(x)在点(1,f(1)处的切线平行于x轴,求a的值;()求函数f(x)的极值;()当a=1的值时,若直线l:y=kx1与曲线y=f(x)没有公共点,求k的最大值 22若已知,求sinx的值23过抛物线y2=2px(p0)的焦点F作倾斜角为45的直线交抛物线于A、B两点,若线段AB的长为8,求抛物线的方程24【徐州市2018届高三上学期期中】如图,有一块半圆形空地,开发商计划建一个矩形游泳池及其矩形附属设施,并将剩余空地进行绿化,园林局要求绿化面积应最大化其中半圆的圆心为,半径为,矩形的一边在直径上,点、在圆周上,、在边上,且,设(1)记游泳池及其附属设施的占地面积为,求的表达式;(2)怎样设计才能符合园林局的要求?柘荣县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:函数f(x)是奇函数,在(0,+)上单调递减,且f ()=0,f ()=0,且在区间(,0)上单调递减,当x0,当x0时,f(x)0,此时xf(x)0当x0,当0x时,f(x)0,此时xf(x)0综上xf(x)0的解集为故选B2 【答案】B【解析】由题意设,且在时恒成立,而令,则,所以在上递增,所以当时,在上递增,符合题意;当时,在上递减,与题意不合;当时,为一个递增函数,而,由零点存在性定理,必存在一个零点,使得,当时,从而在上单调递减,从而,与题意不合,综上所述:的取值范围为,故选B 3 【答案】B【解析】解:绘制频率分布直方图时,各小长方形的面积等于相应各组的频率,故错;线性回归直线一定经过样本中心点(,),故正确;设随机变量服从正态分布N(1,32)则p(1)=,正确;对分类变量X与Y,它们的随机变量K2的观测值k来说,k越大,“X与Y有关系”的把握程度越大,故不正确故选:B【点评】本题考查统计的基础知识:频率分布直方图和线性回归及分类变量X,Y的关系,属于基础题4 【答案】C 【解析】试题分析:因为三个数等比数列,所以,倒数重新排列后恰好为递增的等比数列的前三项,为,公比为,数列是以为首项,为公比的等比数列,则不等式等价为,整理,得,故选C. 1考点:1、等比数列的性质;2、等比数列前项和公式.5 【答案】C【解析】解:f(x)=log2x,f(2)=20,f(4)=0,满足f(2)f(4)0,f(x)在区间(2,4)内必有零点,故选:C6 【答案】B【解析】考点:向量共线定理7 【答案】C【解析】解:按照结构图的表示一目了然,就是总工程师、专家办公室和开发部读结构图的顺序是按照从上到下,从左到右的顺序故选C【点评】本题是一个已知结构图,通过解读各部分从而得到系统具有的功能,在解读时,要从大的部分读起,一般而言,是从左到右,从上到下的过程解读8 【答案】A【解析】解:0a1,实数x,y满足,即y=,故函数y为偶函数,它的图象关于y轴对称,在(0,+)上单调递增,且函数的图象经过点(0,1),故选:A【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题9 【答案】C【解析】1111试题分析:由直线方程,可得直线的倾斜角为,又因为这两条直线的夹角在,所以直线的倾斜角的取值范围是且,所以直线的斜率为且,即或,故选C.考点:直线的倾斜角与斜率.10【答案】A【解析】解:点集(x,y)|(|x|1)2+y2=4表示的图形是一条封闭的曲线,关于x,y轴对称,如图所示由图可得面积S=+=+2故选:A【点评】本题考查线段的方程特点,由曲线的方程研究曲线的对称性,体现了数形结合的数学思想11【答案】C【解析】解:连结A1D、BD、A1B,正方体ABCDA1B1C1D1中,点E,F分别是AA1,AD的中点,EFA1D,A1BD1C,DA1B是CD1与EF所成角,A1D=A1B=BD,DA1B=60CD1与EF所成角为60故选:C【点评】本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养12【答案】B【解析】解:(4+5i)i=54i,复数(4+5i)i的共轭复数为:5+4i,在复平面内,复数(4+5i)i的共轭复数对应的点的坐标为:(5,4),位于第二象限故选:B二、填空题13【答案】( 1,2) 【解析】解:设点P坐标为(a2,a)依题意可知抛物线的准线方程为x=2a2+2=,求得a=2点P的坐标为( 1,2)故答案为:( 1,2)【点评】本题主要考查了两点间的距离公式、抛物线的简单性质,属基础题14【答案】(2,2) 【解析】解:loga1=0,当x1=1,即x=2时,y=2,则函数y=loga(x1)+2的图象恒过定点 (2,2)故答案为:(2,2)【点评】本题考查对数函数的性质和特殊点,主要利用loga1=0,属于基础题15【答案】160 【解析】解:由于(x)6展开式的通项公式为 Tr+1=(2)rx62r,令62r=0,求得r=3,可得(x)6展开式的常数项为8=160,故答案为:160【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题16【答案】【解析】【易错点睛】古典概型的两种破题方法:(1)树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件数的探求另外在确定基本事件时,可以看成是有序的,如与不同;有时也可以看成是无序的,如相同(2)含有“至多”、“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,考虑其反面,即对立事件,应用求解较好17【答案】【解析】试题分析:考点:导数几何意义【思路点睛】(1)求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.18【答案】【解析】试题分析:由题意得考点:幂函数定义三、解答题19【答案】【解析】(1)f(t)=10=102sin(t+),t0,24),t+,故当t+=时,函数取得最大值为10+2=12,当t+=时,函数取得最小值为102=8,故实验室这一天的最大温差为128=4。(2)由题意可得,当f(t)11时,需要降温,由()可得f(t)=102sin(t+),由102sin(t+)11,求得sin(t+),即t+,解得10t18,即在10时到18时,需要降温。20【答案】 【解析】解:()已知等式2bcosC=2ac,利用正弦定理化简得:2sinBcosC=2sinAsinC=2sin(B+C)sinC=2sinBcosC+2cosBsinCsinC,整理得:2cosBsinCsinC=0,sinC0,cosB=,则B=60;()ABC的面积为=acsinB=ac,解得:ac=4,又b=2,由余弦定理可得:22=a2+c2ac=(a+c)23ac=(a+c)212,解得:a+c=4,联立解得:a=c=221【答案】 【解析】解:()由f(x)=x1+,得f(x)=1,又曲线y=f(x)在点(1,f(1)处的切线平行于x轴,f(1)=0,即1=0,解得a=e()f(x)=1,当a0时,f(x)0,f(x)为(,+)上的增函数,所以f(x)无极值;当a0时,令f(x)=0,得ex=a,x=lna,x(,lna),f(x)0;x(lna,+),f(x)0;f(x)在(,lna)上单调递减,在(lna,+)上单调递增,故f(x)在x=lna处取到极小值,且极小值为f(lna)=lna,无极大值综上,当a0时,f(x)无极值;当a0时,f(x)在x=lna处取到极小值lna,无极大值()当a=1时,f(x)=x1+,令g(x)=f(x)(kx1)=(1k)x+,则直线l:y=kx1与曲线y=f(x)没有公共点,等价于方程g(x)=0在R上没有实数解假设k1,此时g(0)=10,g()=1+0,又函数g(x)的图象连续不断,由零点存在定理可知g(x)=0在R上至少有一解,与“方程g(x)=0在R上没有实数解”矛盾,故k1又k=1时,g(x)=0,知方程g(x)=0在R上没有实数解,所以k的最大值为1 22【答案】 【解析】解:,2,sin()=sinx=sin(x+)=sin()coscos()sin=【点评】本题考查了两角和差的余弦函数公式,属于基础题23【答案】 【解析】解:由题意可知过焦点的直线方程为y=x,联立,得,设A(x1,y1),B(x2,y2)根据抛物线的定义,得|AB|=x1+x2+p=4p=8,解得p=2抛物线的方程为y2=4x【点评】本题给出直线与抛物线相交,在已知被截得弦长的情况
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教师招聘之《幼儿教师招聘》考前冲刺测试卷讲解附参考答案详解【预热题】
- 2025年教师招聘之《幼儿教师招聘》练习题库包含答案详解【预热题】
- 德州移动:激发新质生产力实践
- 肉毒素注射课件
- 2025秋大象版(2024)小学科学三年级上册《空气受热上升》教学设计
- 窦性停搏的临床护理
- 教师招聘之《幼儿教师招聘》考试押题密卷及参考答案详解(达标题)
- 油系统冲洗方案
- 新质生产力与互联网运营
- 聚酯行业安全培训课件
- 环境学概论课课件
- 药包材生产质量管理手册
- 牛常见病防治课件
- 装饰工程保修单
- IInterlib区域图书馆集群管理系统-用户手册
- EnglishDrama英语戏剧写作及表演技巧课件
- DB11T 827-2019 废旧爆炸物品销毁处置安全管理规程
- 社会组织管理概论全套ppt课件(完整版)
- 轧机设备安装施工方案
- (完整版)IATF16949新版过程乌龟图的编制与详解课件
- 制药企业仓库温湿度分布的验证
评论
0/150
提交评论