已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
潮南区三中2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 设定义域为(0,+)的单调函数f(x),对任意的x(0,+),都有ff(x)lnx=e+1,若x0是方程f(x)f(x)=e的一个解,则x0可能存在的区间是( )A(0,1)B(e1,1)C(0,e1)D(1,e)2 已知向量,(),且,点在圆上,则( )A B C D3 已知,满足不等式则目标函数的最大值为( )A3 B C12 D154 设a=60.5,b=0.56,c=log0.56,则( )AcbaBcabCbacDbca5 如图所示是一个几何体的三视图,其中正视图是一个正三角形,则这个几何体的表面积是( )ABC +D +16 已知函数f(x)=若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是( )A(0,1)B(1,+)C(1,0)D(,1)7 二项式的展开式中项的系数为10,则( )A5 B6 C8 D10【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力8 若命题“pq”为假,且“q”为假,则( )A“pq”为假Bp假Cp真D不能判断q的真假9 与463终边相同的角可以表示为(kZ)( )Ak360+463Bk360+103Ck360+257Dk36025710设ABC的三边长分别为a、b、c,ABC的面积为S,内切圆半径为r,则,类比这个结论可知:四面体SABC的四个面的面积分别为S1、S2、S3、S4,内切球半径为r,四面体SABC的体积为V,则r=( )ABCD11若方程C:x2+=1(a是常数)则下列结论正确的是( )AaR+,方程C表示椭圆BaR,方程C表示双曲线CaR,方程C表示椭圆DaR,方程C表示抛物线12直角梯形中,直线截该梯形所得位于左边图形面积为,则函数的图像大致为( ) 二、填空题13如图所示,圆中,弦的长度为,则的值为_【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想14已知偶函数f(x)的图象关于直线x=3对称,且f(5)=1,则f(1)=1517已知函数f(x)是定义在R上的奇函数,且它的图象关于直线x=1对称16已知数列an中,2an,an+1是方程x23x+bn=0的两根,a1=2,则b5=17(sinx+1)dx的值为18甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,则至少有一个红球的概率为 三、解答题19已知斜率为2的直线l被圆x2+y2+14y+24=0所截得的弦长为,求直线l的方程20设f(x)=x2ax+2当x,使得关于x的方程f(x)tf(2a)=0有三个不相等的实数根,求实数t的取值范围 21如图,在三棱柱ABCA1B1C1中,底面ABC是边长为2的等边三角形,D为AB中点(1)求证:BC1平面A1CD;(2)若四边形BCC1B1是正方形,且A1D=,求直线A1D与平面CBB1C1所成角的正弦值22若点(p,q),在|p|3,|q|3中按均匀分布出现(1)点M(x,y)横、纵坐标分别由掷骰子确定,第一次确定横坐标,第二次确定纵坐标,则点M(x,y)落在上述区域的概率?(2)试求方程x2+2pxq2+1=0有两个实数根的概率23已知函数y=x+有如下性质:如果常数t0,那么该函数在(0,上是减函数,在,+)上是增函数(1)已知函数f(x)=x+,x1,3,利用上述性质,求函数f(x)的单调区间和值域;(2)已知函数g(x)=和函数h(x)=x2a,若对任意x10,1,总存在x20,1,使得h(x2)=g(x1)成立,求实数a的值 24某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场每销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元()若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量n(单位:台,nN)的函数解析式f(n);()该商场记录了去年夏天(共10周)空调器需求量n(单位:台),整理得表:周需求量n1819202122频数12331以10周记录的各需求量的频率作为各需求量发生的概率,若商场周初购进20台空调器,X表示当周的利润(单位:元),求X的分布列及数学期望潮南区三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】 D【解析】解:由题意知:f(x)lnx为常数,令f(x)lnx=k(常数),则f(x)=lnx+k由ff(x)lnx=e+1,得f(k)=e+1,又f(k)=lnk+k=e+1,所以f(x)=lnx+e,f(x)=,x0f(x)f(x)=lnx+e,令g(x)=lnx+e=lnx,x(0,+)可判断:g(x)=lnx,x(0,+)上单调递增,g(1)=1,g(e)=10,x0(1,e),g(x0)=0,x0是方程f(x)f(x)=e的一个解,则x0可能存在的区间是(1,e)故选:D【点评】本题考查了函数的单调性,零点的判断,构造思想,属于中档题2 【答案】A【解析】考点:1、向量的模及平面向量数量积的运算;2、点和圆的位置关系.3 【答案】C 考点:线性规划问题【易错点睛】线性规划求解中注意的事项:(1)线性规划问题中,正确画出不等式组表示的平面区域是解题的基础(2)目标函数的意义,有的可以用直线在轴上的截距来表示,还有的可以用两点连线的斜率、两点间的距离或点到直线的距离来表示(3)线性目标函数的最值一般在可行域的顶点或边界上取得,特别地对最优整数解可视情况而定4 【答案】A【解析】解:a=60.51,0b=0.561,c=log0.560,cba故选:A【点评】本题考查了指数函数与对数函数的单调性,属于基础题5 【答案】D【解析】解:由三视图可知:该几何体是如图所示的三棱锥,其中侧面PAC面ABC,PAC是边长为2的正三角形,ABC是边AC=2,边AC上的高OB=1,PO=为底面上的高于是此几何体的表面积S=SPAC+SABC+2SPAB=2+21+2=+1+故选:D【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状6 【答案】A【解析】解:函数f(x)=的图象如下图所示:由图可得:当k(0,1)时,y=f(x)与y=k的图象有两个交点,即方程f(x)=k有两个不同的实根,故选:A7 【答案】B【解析】因为的展开式中项系数是,所以,解得,故选A8 【答案】B【解析】解:命题“pq”为假,且“q”为假,q为真,p为假;则pq为真,故选B【点评】本题考查了复合命题的真假性的判断,属于基础题9 【答案】C【解析】解:与463终边相同的角可以表示为:k360463,(kZ)即:k360+257,(kZ)故选C【点评】本题考查终边相同的角,是基础题10【答案】 C【解析】解:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和则四面体的体积为 R=故选C【点评】类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去一般步骤:找出两类事物之间的相似性或者一致性用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想)11【答案】 B【解析】解:当a=1时,方程C:即x2+y2=1,表示单位圆aR+,使方程C不表示椭圆故A项不正确;当a0时,方程C:表示焦点在x轴上的双曲线aR,方程C表示双曲线,得B项正确;aR,方程C不表示椭圆,得C项不正确不论a取何值,方程C:中没有一次项aR,方程C不能表示抛物线,故D项不正确综上所述,可得B为正确答案故选:B12【答案】C【解析】试题分析:由题意得,当时,当时,所以,结合不同段上函数的性质,可知选项C符合,故选C.考点:分段函数的解析式与图象.二、填空题13【答案】14【答案】1 【解析】解:f(x)的图象关于直线x=3对称,且f(5)=1,则f(1)=f(5)=1,f(x)是偶函数,所以f(1)=f(1)=1故答案为:115【答案】 【解析】解:f(x)=axg(x)(a0且a1),=ax,又f(x)g(x)f(x)g(x),()=0,=ax是增函数,a1,+=a1+a1=,解得a=或a=2综上得a=2数列为2n数列的前n项和大于62,2+22+23+2n=2n+1262,即2n+164=26,n+16,解得n5n的最小值为6故答案为:6【点评】本题考查等比数列的前n项和公式的应用,巧妙地把指数函数、导数、数列融合在一起,是一道好题16【答案】1054 【解析】解:2an,an+1是方程x23x+bn=0的两根,2an+an+1=3,2anan+1=bn,a1=2,a2=1,同理可得a3=5,a4=7,a5=17,a6=31则b5=217(31)=1054故答案为:1054【点评】本题考查了一元二次方程的根与系数的关系、递推关系,考查了推理能力与计算能力,属于中档题17【答案】2 【解析】解:所求的值为(xcosx)|11=(1cos1)(1cos(1)=2cos1+cos1=2故答案为:218【答案】【解析】【易错点睛】古典概型的两种破题方法:(1)树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件数的探求另外在确定基本事件时,可以看成是有序的,如与不同;有时也可以看成是无序的,如相同(2)含有“至多”、“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,考虑其反面,即对立事件,应用求解较好三、解答题19【答案】 【解析】解:将圆的方程写成标准形式,得x2+(y+7)2=25,所以,圆心坐标是(0,7),半径长r=5因为直线l被圆所截得的弦长是,所以,弦心距为,即圆心到所求直线l的距离为因为直线l的斜率为2,所以可设所求直线l的方程为y=2x+b,即2xy+b=0所以圆心到直线l的距离为,因此,解得b=2,或b=12所以,所求直线l的方程为y=2x2,或y=2x12即2xy2=0,或2xy12=0【点评】本题主要考查直线方程,考查直线与圆的位置关系,在相交时半径的平方等于圆心到直线的距离平方与弦长一半的平方的和的灵活运用20【答案】【解析】设f(x)=x2ax+2当x,则t=,对称轴m=(0,且开口向下;时,t取得最小值,此时x=9税率t的最小值为【点评】此题是个指数函数的综合题,但在求解的过程中也用到了构造函数的思想及二次函数在定义域内求最值的知识考查的知识全面而到位!21【答案】 【解析】证明:(1)连AC1,设AC1与A1C相交于点O,连DO,则O为AC1中点,D为AB的中点,DOBC1,BC1平面A1CD,DO平面A1CD,BC1平面A1CD 解:底面ABC是边长为2等边三角形,D为AB的中点,四边形BCC1B1是正方形,且A1D=,CDAB,CD=,AD=1,AD2+AA12=A1D2,AA1AB,CDDA1,又DA1AB=D,CD平面ABB1A1,BB1平面ABB1A1,BB1CD,矩形BCC1B1,BB1BC,BCCD=CBB1平面ABC,底面ABC是等边三角形,三棱柱ABCA1B1C1是正三棱柱以C为原点,CB为x轴,CC1为y轴,过C作平面CBB1C1的垂线为z轴,建立空间直角坐标系,B(2,0,0),A(1,0,),D(,0,),A1(1,2,),=(,2,),平面CBB1C1的法向量=(0,0,1),设直线A1D与平面CBB1C1所成角为,则sin=直线A1D与平面CBB1C1所成角的正弦值为22【答案】 【解析】解:(1)根据题意,点(p,q),在|p|3,|q|3中,即在如图的正方形区域,其中p、q都是整数的点有66=36个,点M(x,y)横、纵坐标分别由掷骰子确定,即x、y都是整数,且1x3,1y3,点M(x,y)落在上述区域有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),有9个点,所以点M(x,y)落在上述区域的概率P1=;(2)|p|3,|q|3表示如图的正方形区域,易得其面积为36;若方程x2+2pxq2+1=0有两个实数根,则有=(2p)24(q2+1)0,解可得p2+q21,为如图所示正方形中圆以外的区域,其面积为36,即方程x2+2pxq2+1=0有两个实数根的概率,P2=【点评】本题考查几何概型、古典概型的计算,解题时注意区分两种概率的异同点23【答案】 【解析】解:(1)由已知可以知道,函数f(x)在x1,2上单调递减,在x2,3上单调递增,f(x)min=f(2)=2+2=4,又f(1)=1+4=5,f(3)=3+=;f(1)f(3)所以f(x)max=f(1)=5所以f(x)在x1,3的值域为4,5(2)y=g(x)=2x+1+8设=2x+1,x0,1,13,则y=8,由已知性质得,当1u2,即0x时,g(x)单调递减,所以递减区间为0,;当2u3,即x1时,g(x)单调递增,所以递增区间为,1;由g(0)=3,g()=4,g(1)=,得g(x)的值域为4,3因为h(x)=x2a为减函数,故h(x)12a,2a,x0,1根据题意,g(x)的值域为h(x)的值域的子集,从而有,所以a= 24【答案】 【解析】解:(I)当n20时,f(n)=50020+200(n20)=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 终末期肾脏病的护理
- 大脑前动脉斑块的护理
- 2026年金华兰溪市卫健系统第一批面向高校招聘医学类应届毕业生17人历年真题汇编及答案解析(夺冠)
- 2025年12月广东深圳中学光明科学城学校(集团)面向2026年应届毕业生招聘教师11人(深圳定点)历年真题汇编附答案解析
- 2026年劳务员之劳务员基础知识考试题库200道含答案(基础题)
- 浙江国企招聘-2025丽水青田县旅游发展有限公司劳务工作人员7人历年真题汇编及答案解析(夺冠)
- 2026航天科技校招提前批招聘备考题库附答案
- 2026年设备监理师之设备工程监理基础及相关知识考试题库200道及完整答案1套
- 2026年初级经济师之初级经济师财政税收考试题库300道附答案(培优a卷)
- 2026年质量员之土建质量基础知识考试题库带答案(培优)
- 软件工程生涯发展展示
- 内蒙古科技大学开题报告
- 自身免疫性溶血性贫血课件
- 中国马克思主义与当代思考题(附答案)
- 体育社会学课件第十章社会体育的社会学分析
- 展厅设计布展投标方案(完整技术标)
- 新员工公司级安全生产培训课件
- 大学面试试讲PPT-机械原理
- 科达视频会议控制台操作
- 非遗文化介绍推广课件
- 全老旧小区改造配套基础设施项目工程监理实施细则
评论
0/150
提交评论