已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷铁岭市第二中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知(0,),且sin+cos=,则tan=( )ABCD2 若f(x)=sin(2x+),则“f(x)的图象关于x=对称”是“=”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分又不必要条件3 二项式的展开式中项的系数为10,则( )A5 B6 C8 D10【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力4 设为双曲线的右焦点,若的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为,则双曲线的离心率为( )ABCD3【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想5 在中,内角,所对的边分别是,已知,则( )A B C. D6 设等差数列an的前n项和为Sn,已知S4=2,S5=0,则S6=( )A0B1C2D37 随机变量x1N(2,1),x2N(4,1),若P(x13)=P(x2a),则a=( )A1B2C3D48 已知d为常数,p:对于任意nN*,an+2an+1=d;q:数列 an是公差为d的等差数列,则p是q的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件9 已知函数f(x)=ax33x2+1,若f(x)存在唯一的零点x0,且x00,则实数a的取值范围是( )A(1,+)B(2,+)C(,1)D(,2)10函数 y=x24x+1,x2,5的值域是( )A1,6B3,1C3,6D3,+)11设集合M=(x,y)|x2+y2=1,xR,yR,N=(x,y)|x2y=0,xR,yR,则集合MN中元素的个数为( )A1B2C3D412给出下列各函数值:sin100;cos(100);tan(100);其中符号为负的是( )ABCD二、填空题13命题“若,则”的否命题为14若命题“xR,|x2|kx+1”为真,则k的取值范围是15以抛物线y2=20x的焦点为圆心,且与双曲线:的两条渐近线都相切的圆的方程为16如图,一船以每小时20km的速度向东航行,船在A处看到一个灯塔B在北偏东60方向,行驶4小时后,船到达C处,看到这个灯塔在北偏东15方向,这时船与灯塔间的距离为km17已知数列1,a1,a2,9是等差数列,数列1,b1,b2,b3,9是等比数列,则的值为18已知函数,其图象上任意一点处的切线的斜率恒成立,则实数的取值范围是 三、解答题19本小题满分12分 设函数讨论的导函数零点个数;证明:当时, 20(本小题满分12分)中央电视台电视公开课开讲了需要现场观众,先邀请甲、乙、丙、丁四所大学的40名学生参加,各大学邀请的学生如下表所示:大学甲乙丙丁人数812812从这40名学生中按分层抽样的方式抽取10名学生在第一排发言席就座.(1)求各大学抽取的人数;(2)从(1)中抽取的乙大学和丁大学的学生中随机选出2名学生发言,求这2名学生来自同一所大学的概率.21在平面直角坐标系中,矩阵M对应的变换将平面上任意一点P(x,y)变换为点P(2x+y,3x)()求矩阵M的逆矩阵M1;()求曲线4x+y1=0在矩阵M的变换作用后得到的曲线C的方程 22已知二次函数f(x)=x2+2bx+c(b,cR)(1)若函数y=f(x)的零点为1和1,求实数b,c的值;(2)若f(x)满足f(1)=0,且关于x的方程f(x)+x+b=0的两个实数根分别在区间(3,2),(0,1)内,求实数b的取值范围23设f(x)=2x3+ax2+bx+1的导数为f(x),若函数y=f(x)的图象关于直线x=对称,且f(1)=0()求实数a,b的值()求函数f(x)的极值24计算下列各式的值:(1)(2)(lg5)2+2lg2(lg2)2铁岭市第二中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:将sin+cos=两边平方得:(sin+cos)2=1+2sincos=,即2sincos=0,0,sincos0,(sincos)2=12sincos=,即sincos=,联立解得:sin=,cos=,则tan=故选:D2 【答案】B【解析】解:若f(x)的图象关于x=对称,则2+=+k,解得=+k,kZ,此时=不一定成立,反之成立,即“f(x)的图象关于x=对称”是“=”的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,结合三角函数的对称性是解决本题的关键3 【答案】B【解析】因为的展开式中项系数是,所以,解得,故选A4 【答案】B【解析】5 【答案】A【解析】考点:正弦定理及二倍角公式.【思路点晴】本题中用到了正弦定理实现三角形中边与角的互化,同角三角函数间的基本关系及二倍角公式,如,这要求学生对基本公式要熟练掌握解三角形时常借助于正弦定理,余弦定理, 实现边与角的互相转化.6 【答案】D【解析】解:设等差数列an的公差为d,则S4=4a1+d=2,S5=5a1+d=0,联立解得,S6=6a1+d=3故选:D【点评】本题考查等差数列的求和公式,得出数列的首项和公差是解决问题的关键,属基础题7 【答案】C【解析】解:随机变量x1N(2,1),图象关于x=2对称,x2N(4,1),图象关于x=4对称,因为P(x13)=P(x2a),所以32=4a,所以a=3,故选:C【点评】本题主要考查正态分布的图象,结合正态曲线,加深对正态密度函数的理解8 【答案】A【解析】解:p:对于任意nN*,an+2an+1=d;q:数列 an是公差为d的等差数列,则p:nN*,an+2an+1d;q:数列 an不是公差为d的等差数列,由pq,即an+2an+1不是常数,则数列 an就不是等差数列,若数列 an不是公差为d的等差数列,则不存在nN*,使得an+2an+1d,即前者可以推出后者,前者是后者的充分条件,即后者可以推不出前者,故选:A【点评】本题考查等差数列的定义,是以条件问题为载体的,这种问题注意要从两个方面入手,看是不是都能够成立9 【答案】D【解析】解:f(x)=ax33x2+1,f(x)=3ax26x=3x(ax2),f(0)=1;当a=0时,f(x)=3x2+1有两个零点,不成立;当a0时,f(x)=ax33x2+1在(,0)上有零点,故不成立;当a0时,f(x)=ax33x2+1在(0,+)上有且只有一个零点;故f(x)=ax33x2+1在(,0)上没有零点;而当x=时,f(x)=ax33x2+1在(,0)上取得最小值;故f()=3+10;故a2;综上所述,实数a的取值范围是(,2);故选:D10【答案】C【解析】解:y=x24x+1=(x2)23当x=2时,函数取最小值3当x=5时,函数取最大值6函数 y=x24x+1,x2,5的值域是3,6故选C【点评】本题考查了二次函数最值的求法,即配方法,解题时要分清函数开口方向,辨别对称轴与区间的位置关系,仔细作答11【答案】B【解析】解:根据题意,MN=(x,y)|x2+y2=1,xR,yR(x,y)|x2y=0,xR,yR(x,y)|将x2y=0代入x2+y2=1,得y2+y1=0,=50,所以方程组有两组解,因此集合MN中元素的个数为2个,故选B【点评】本题既是交集运算,又是函数图形求交点个数问题12【答案】B【解析】解:sin1000,cos(100)=cos1000,tan(100)=tan1000,sin0,cos=1,tan0,0,其中符号为负的是,故选:B【点评】本题主要考查三角函数值的符号的判断,判断角所在的象限是解决本题的关键,比较基础二、填空题13【答案】若,则【解析】试题分析:若,则,否命题要求条件和结论都否定考点:否命题.14【答案】1,) 【解析】解:作出y=|x2|,y=kx+1的图象,如图所示,直线y=kx+1恒过定点(0,1),结合图象可知k1,)故答案为:1,)【点评】本题考查全称命题,考查数形结合的数学思想,比较基础15【答案】(x5)2+y2=9 【解析】解:抛物线y2=20x的焦点坐标为(5,0),双曲线:的两条渐近线方程为3x4y=0由题意,r=3,则所求方程为(x5)2+y2=9故答案为:(x5)2+y2=9【点评】本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,属于基础题16【答案】 【解析】解:根据题意,可得出B=7530=45,在ABC中,根据正弦定理得:BC=海里,则这时船与灯塔的距离为海里故答案为17【答案】 【解析】解:已知数列1,a1,a2,9是等差数列,a1+a2 =1+9=10数列1,b1,b2,b3,9是等比数列, =19,再由题意可得b2=1q20 (q为等比数列的公比),b2=3,则=,故答案为【点评】本题主要考查等差数列、等比数列的定义和性质应用,属于中档题18【答案】【解析】试题分析:,因为,其图象上任意一点处的切线的斜率恒成立,恒成立,由1考点:导数的几何意义;不等式恒成立问题【易错点睛】本题主要考查了导数的几何意义;不等式恒成立问题等知识点求函数的切线方程的注意事项:(1)首先应判断所给点是不是切点,如果不是,要先设出切点 (2)切点既在原函数的图象上也在切线上,可将切点代入两者的函数解析式建立方程组(3)在切点处的导数值就是切线的斜率,这是求切线方程最重要的条件三、解答题19【答案】【解析】:,因为定义域为, 有解 即有解. 令,当所以,当时,无零点; 当时,有唯一零点.由可知,当时,设在上唯一零点为,当,在为增函数;当,在为减函数.20【答案】(1)甲,乙,丙,丁;(2).【解析】试题分析:(1)从这名学生中按照分层抽样的方式抽取名学生,则各大学人数分别为甲,乙,丙,丁;(2)利用列举出从参加问卷调查的名学生中随机抽取两名学生的方法共有种,这来自同一所大学的取法共有种,再利用古典慨型的概率计算公式即可得出.试题解析:(1)从这40名学生中按照分层抽样的方式抽取10名学生,则各大学人数分别为甲2,乙3,丙2,丁3. (2)设乙中3人为,丁中3人为,从这6名学生中随机选出2名学生发言的结果为,共15种, 这2名同学来自同一所大学的结果共6种,所以所求概率为.考点:1、分层抽样方法的应用;2、古典概型概率公式.21【答案】 【解析】解:()设点P(x,y)在矩阵M对应的变换作用下所得的点为P(x,y),则即=,M=又det(M)=3,M1=;()设点A(x,y)在矩阵M对应的变换作用下所得的点为A(x,y),则=M1=,即,代入4x+y1=0,得,即变换后的曲线方程为x+2y+1=0【点评】本题主要考查矩阵与变换等基础知识,考查运算求解能力及化归与转化思想,属于中档题 22【答案】 【解析】解:(1)1,1是函数y=f(x)的零点,解得b=0,c=1(2)f(1)=1+2b+c=0,所以c=12b令g(x)=f(x)+x+b=x2+(2b+1)x+b+c=x2+(2b+1)xb1,关于x的方程f(x)+x+b=0的两个实数根分别在区间(3,2),(0,1)内,即解得b,即实数b的取值范围为(,)【点评】本题考查了二次函数根与系数得关系,零点的存在性定理,属于中档题23【答案】 【解析】解:()因f(x)=2x3+ax2+bx+1,故f(x)=6x2+2ax+b从而f(x)=6y=f(x)关于直线x=对称,从而由条件可知=,解得a=3又由于f(x)=0,即6+2a+b=0,解得b=12()由()知f(x)=2x3+3x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 售后承包协议书范本
- 合同日期更改的协议
- 外墙施工责任协议书
- 培训场地费合同范本
- 如何制作包赔协议书
- 合同社保缴纳协议书
- 塑料供货合同协议书
- 委托购房公正协议书
- 合伙买房合同协议书
- 合伙雇人开店协议书
- 2025至2030全球及中国内容交付网络(CDN)安全软件行业项目调研及市场前景预测评估报告
- 2025杭州市交通投资集团有限公司招聘18人考试笔试模拟试题及答案解析
- 湖北宜化化工面试题及答案
- 2026-2031年中国审计服务行业市场现状供需分析及投资评估规划分析研究报告
- 2025年军工行业军事人工智能技术研究报告及未来发展趋势
- 2025年废旧电子产品拆解合同协议
- 垃圾清运应急预案
- 2025年非处方药试题及答案详解
- 【投资安徽】2025年安徽省重点产业投资全景分析报告
- 2024年河南省体育彩票管理中心招聘真题
- 2025年个人述责述廉报告
评论
0/150
提交评论