已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
忻府区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知m,n为不同的直线,为不同的平面,则下列说法正确的是( )Am,nmnBm,nmnCm,n,mnDn,n2 已知双曲线(a0,b0)的一条渐近线方程为,则双曲线的离心率为( )ABCD3 函数f(x)=x的图象关于( )Ay轴对称B直线y=x对称C坐标原点对称D直线y=x对称4 已知函数f(x)满足f(x)=f(x),且当x(,)时,f(x)=ex+sinx,则( )ABCD5 设方程|x2+3x3|=a的解的个数为m,则m不可能等于( )A1B2C3D46 已知,若存在,使得,则的取值范围是( )A B C. D7 等差数列an中,已知前15项的和S15=45,则a8等于( )AB6CD38 (m+1)x2(m1)x+3(m1)0对一切实数x恒成立,则实数m的取值范围是( )A(1,+)B(,1)CD9 如图可能是下列哪个函数的图象( )Ay=2xx21By=Cy=(x22x)exDy=10函数y=sin2x+cos2x的图象,可由函数y=sin2xcos2x的图象( )A向左平移个单位得到B向右平移个单位得到C向左平移个单位得到D向左右平移个单位得到11已知在平面直角坐标系中,点,().命题:若存在点在圆上,使得,则;命题:函数在区间内没有零点.下列命题为真命题的是( )A B C D12如果执行如图所示的程序框图,那么输出的a=( )A2BC1D以上都不正确二、填空题13袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为14给出下列四个命题:函数y=|x|与函数表示同一个函数;奇函数的图象一定通过直角坐标系的原点;函数y=3x2+1的图象可由y=3x2的图象向上平移1个单位得到;若函数f(x)的定义域为0,2,则函数f(2x)的定义域为0,4;设函数f(x)是在区间a,b上图象连续的函数,且f(a)f(b)0,则方程f(x)=0在区间a,b上至少有一实根;其中正确命题的序号是(填上所有正确命题的序号)15已知等比数列an是递增数列,Sn是an的前n项和若a1,a3是方程x25x+4=0的两个根,则S6= 16对于函数,“的图象关于y轴对称”是“”的 条件 (填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”)17在ABC中,角A,B,C的对边分别为a,b,c,sinA,sinB,sinC依次成等比数列,c=2a且=24,则ABC的面积是18已知点A的坐标为(1,0),点B是圆心为C的圆(x1)2+y2=16上一动点,线段AB的垂直平分线交BC与点M,则动点M的轨迹方程为 三、解答题19(本题满分12分)在长方体中,是棱上的一点,是棱上的一点.(1)求证:平面;(2)求证:;(3)若是棱的中点,是棱的中点,求证:平面.20如图,ABCD是边长为3的正方形,DE平面ABCD,AFDE,DE=3AF,BE与平面ABCD所成角为60()求证:AC平面BDE;()求二面角FBED的余弦值;()设点M是线段BD上一个动点,试确定点M的位置,使得AM平面BEF,并证明你的结论21已知函数f(x)=log2(x3),(1)求f(51)f(6)的值;(2)若f(x)0,求x的取值范围22设a,b互为共轭复数,且(a+b)23abi=412i求a,b 的值23已知函数f(x)=x2(2a+1)x+alnx,aR(1)当a=1,求f(x)的单调区间;(4分)(2)a1时,求f(x)在区间1,e上的最小值;(5分)(3)g(x)=(1a)x,若使得f(x0)g(x0)成立,求a的范围.24如图,四棱锥中,为线段上一点,为的中点(1)证明:平面;(2)求直线与平面所成角的正弦值;忻府区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】D【解析】解:在A选项中,可能有n,故A错误;在B选项中,可能有n,故B错误;在C选项中,两平面有可能相交,故C错误;在D选项中,由平面与平面垂直的判定定理得D正确故选:D【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养2 【答案】A【解析】解:双曲线的中心在原点,焦点在x轴上,设双曲线的方程为,(a0,b0)由此可得双曲线的渐近线方程为y=x,结合题意一条渐近线方程为y=x,得=,设b=4t,a=3t,则c=5t(t0)该双曲线的离心率是e=故选A【点评】本题给出双曲线的一条渐近线方程,求双曲线的离心率,着重考查了双曲线的标准方程、基本概念和简单几何性质等知识,属于基础题3 【答案】C【解析】解:f(x)=+x=f(x)是奇函数,所以f(x)的图象关于原点对称故选C4 【答案】D【解析】解:由f(x)=f(x)知,f()=f()=f(),当x(,)时,f(x)=ex+sinx为增函数,f()f()f(),f()f()f(),故选:D5 【答案】A【解析】解:方程|x2+3x3|=a的解的个数可化为函数y=|x2+3x3|与y=a的图象的交点的个数,作函数y=|x2+3x3|与y=a的图象如下,结合图象可知,m的可能值有2,3,4;故选A6 【答案】A 【解析】考点:1、函数零点问题;2、利用导数研究函数的单调性及求函数的最小值. 【方法点晴】本题主要考查函数零点问题、利用导数研究函数的单调性、利用导数研究函数的最值,属于难题利用导数研究函数的单调性进一步求函数最值的步骤:确定函数的定义域;对求导;令,解不等式得的范围就是递增区间;令,解不等式得的范围就是递减区间;根据单调性求函数的极值及最值(若只有一个极值点则极值即是最值,闭区间上还要注意比较端点处函数值的大小). 7 【答案】D【解析】解:由等差数列的性质可得:S15=15a8=45,则a8=3故选:D8 【答案】C【解析】解:不等式(m+1)x2(m1)x+3(m1)0对一切xR恒成立,即(m+1)x2(m1)x+3(m1)0对一切xR恒成立若m+1=0,显然不成立若m+10,则 解得a故选C【点评】本题的求解中,注意对二次项系数的讨论,二次函数恒小于0只需9 【答案】 C【解析】解:A中,y=2xx21,当x趋向于时,函数y=2x的值趋向于0,y=x2+1的值趋向+,函数y=2xx21的值小于0,A中的函数不满足条件;B中,y=sinx是周期函数,函数y=的图象是以x轴为中心的波浪线,B中的函数不满足条件;C中,函数y=x22x=(x1)21,当x0或x2时,y0,当0x2时,y0;且y=ex0恒成立,y=(x22x)ex的图象在x趋向于时,y0,0x2时,y0,在x趋向于+时,y趋向于+;C中的函数满足条件;D中,y=的定义域是(0,1)(1,+),且在x(0,1)时,lnx0,y=0,D中函数不满足条件故选:C【点评】本题考查了函数的图象和性质的应用问题,解题时要注意分析每个函数的定义域与函数的图象特征,是综合性题目10【答案】C【解析】解:y=sin2x+cos2x=sin(2x+),y=sin2xcos2x=sin(2x)=sin2(x)+),由函数y=sin2xcos2x的图象向左平移个单位得到y=sin(2x+),故选:C【点评】本题主要考查三角函数的图象关系,利用辅助角公式将函数化为同名函数是解决本题的关键11【答案】A【解析】试题分析:命题:,则以为直径的圆必与圆有公共点,所以,解得,因此,命题是真命题.命题:函数,,且在上是连续不断的曲线,所以函数在区间内有零点,因此,命题是假命题.因此只有为真命题故选A考点:复合命题的真假【方法点晴】本题考查命题的真假判断,命题的“或”、“且”及“非”的运算性质,同时也考查两圆的位置关系和函数零点存在定理,属于综合题.由于点满足,因此在以为直径的圆上,又点在圆上,因此为两圆的交点,利用圆心距介于两圆半径差与和之间,求出的范围.函数是单调函数,利用零点存在性定理判断出两端点异号,因此存在零点.12【答案】 B【解析】解:模拟执行程序,可得a=2,n=1执行循环体,a=,n=3满足条件n2016,执行循环体,a=1,n=5满足条件n2016,执行循环体,a=2,n=7满足条件n2016,执行循环体,a=,n=9由于2015=3671+2,可得:n=2015,满足条件n2016,执行循环体,a=,n=2017不满足条件n2016,退出循环,输出a的值为故选:B二、填空题13【答案】 【解析】解:方法一:由题意,第1次摸出红球,由于不放回,所以袋中还有5个不同的红球和4个不同的白球故在第1次摸出红球的条件下,第2次摸出的也是红球的概率为=,方法二:先求出“第一次摸到红球”的概率为:P1=,设“在第一次摸出红球的条件下,第二次也摸到红球”的概率是P2再求“第一次摸到红球且第二次也摸到红球”的概率为P=,根据条件概率公式,得:P2=,故答案为:【点评】本题考查了概率的计算方法,主要是考查了条件概率与独立事件的理解,属于中档题看准确事件之间的联系,正确运用公式,是解决本题的关键14【答案】 【解析】解:函数y=|x|,(xR)与函数,(x0)的定义域不同,它们不表示同一个函数;错;奇函数y=,它的图象不通过直角坐标系的原点;故错;函数y=3(x1)2的图象可由y=3x2的图象向右平移1个单位得到;正确;若函数f(x)的定义域为0,2,则函数f(2x)的定义域由02x2,0x1,它的定义域为:0,1;故错;设函数f(x)是在区间ab上图象连续的函数,且f(a)f(b)0,则方程f(x)=0在区间a,b上至少有一实根故正确;故答案为:15【答案】63【解析】解:解方程x25x+4=0,得x1=1,x2=4因为数列an是递增数列,且a1,a3是方程x25x+4=0的两个根,所以a1=1,a3=4设等比数列an的公比为q,则,所以q=2则故答案为63【点评】本题考查了等比数列的通项公式,考查了等比数列的前n项和,是基础的计算题16【答案】必要而不充分【解析】试题分析:充分性不成立,如图象关于y轴对称,但不是奇函数;必要性成立,所以的图象关于y轴对称.考点:充要关系【名师点睛】充分、必要条件的三种判断方法1.定义法:直接判断“若p则q”、“若q则p”的真假并注意和图示相结合,例如“pq”为真,则p是q的充分条件2.等价法:利用pq与非q非p,qp与非p非q,pq与非q非p的等价关系,对于条件或结论是否定式的命题,一般运用等价法3.集合法:若AB,则A是B的充分条件或B是A的必要条件;若AB,则A是B的充要条件17【答案】4 【解析】解:sinA,sinB,sinC依次成等比数列,sin2B=sinAsinC,由正弦定理可得:b2=ac,c=2a,可得:b=a,cosB=,可得:sinB=,=24,可得:accosB=ac=24,解得:ac=32,SABC=acsinB=4故答案为:418【答案】=1【解析】解:由题意得,圆心C(1,0),半径等于4,连接MA,则|MA|=|MB|,|MC|+|MA|=|MC|+|MB|=|BC|=4|AC|=2,故点M的轨迹是:以A、C为焦点的椭圆,2a=4,即有a=2,c=1,b=,椭圆的方程为=1故答案为: =1【点评】本题考查用定义法求点的轨迹方程,考查学生转化问题的能力,属于中档题三、解答题19【答案】【解析】【命题意图】本题综合考查了线面垂直、线线垂直、线面平行等位置关系的证明,对空间想象能力及逻辑推理有较高要求,对于证明中辅助线的运用是一个难点,本题属于中等难度.20【答案】【解析】【分析】(I)由已知中DE平面ABCD,ABCD是边长为3的正方形,我们可得DEAC,ACBD,结合线面垂直的判定定理可得AC平面BDE;()以D为坐标原点,DA,DC,DE方向为x,y,z轴正方向,建立空间直角坐标系,分别求出平面BEF和平面BDE的法向量,代入向量夹角公式,即可求出二面角FBED的余弦值;()由已知中M是线段BD上一个动点,设M(t,t,0)根据AM平面BEF,则直线AM的方向向量与平面BEF法向量垂直,数量积为0,构造关于t的方程,解方程,即可确定M点的位置【解答】证明:()因为DE平面ABCD,所以DEAC因为ABCD是正方形,所以ACBD,从而AC平面BDE(4分)解:()因为DA,DC,DE两两垂直,所以建立空间直角坐标系Dxyz如图所示因为BE与平面ABCD所成角为600,即DBE=60,所以由AD=3,可知,则A(3,0,0),B(3,3,0),C(0,3,0),所以,设平面BEF的法向量为=(x,y,z),则,即令,则=因为AC平面BDE,所以为平面BDE的法向量,所以cos因为二面角为锐角,所以二面角FBED的余弦值为(8分)()点M是线段BD上一个动点,设M(t,t,0)则因为AM平面BEF,所以=0,即4(t3)+2t=0,解得t=2此时,点M坐标为(2,2,0),即当时,AM平面BEF(12分)21【答案】 【解析】解:(1)函数f(x)=log2(x3),f(51)f(6)=log248log23=log216=4;(2)若f(x)0,则0x31,解得:x(3,4【点评】本题考查的知识点是对数函数的图象和性质,对数的运算性质,解答时要时时注意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋服务费协议合同
- 房屋渠道佣金协议书
- 房屋租赁消防协议书
- 房屋自愿搬迁协议书
- 房屋装修粉刷协议书
- 房屋资产交割协议书
- 房屋重建协议书模板
- 房屋预定合同协议书
- 房租提前退房协议书
- 房间转租协议书范本
- 2025年中学生心理测试题及答案
- 2022北京首都师大附中高一12月月考数学(教师版)
- 宣城市中医院透析患者营养评估与指导考核
- 行业会计教学课件
- 2025年及未来5年中国低端服务器市场运行态势及行业发展前景预测报告
- 参考活动4 神奇的DNA教学设计-2025-2026学年初中综合实践活动苏少版七年级上册-苏少版
- (正式版)DB65∕T 4687-2023 《10千伏客户业扩工程典型设计规范》
- GJB1330A-2019军工产品批次管理的质量控制要求
- 大型储罐拆除施工方案(3篇)
- 时尚传播学赵春华课件
- 心脏骤停业务学习课件
评论
0/150
提交评论