PID参数优化算法研究.doc_第1页
PID参数优化算法研究.doc_第2页
PID参数优化算法研究.doc_第3页
PID参数优化算法研究.doc_第4页
PID参数优化算法研究.doc_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PID参数优化算法研究陕西科技大学 何佳佳【摘 要】PID参数优化是自动控制领域研究的一个重要问题。本文主要介绍了PID参数优化算法以及近年来在此方面取得的的研究成果,并对未来PID参数优化的研究方向作了展望。【关键词】PID控制;算法;参数优化Study of algorithms on PID parameter optimizationHE Jiajia, HOU Zai-enAbstract: PID parameter optimization is an important problem in automatic controlling field. The Algorithms of PID parameter optimization and the latest achievements in this aspect are mainly introduced in this paper, and the future directions of PID parameter optimization are also discussed.Keywords: PID control; algorithm; parameter optimization1 引言PID控制即比例-积分-微分(Proportion-Integral-Derivative)控制,它是建立在经典控制理论上的一种控制策略。在工业过程控制系统中,当被控对象的结构和参数不能完全掌握,或精确的数学模型难以建立,或控制理论的技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时最常用的就是PID控制。即使我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,也适合采用PID控制技术。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。它是迄今为止历史最悠久,生命力最强的控制方式,国内外95%1以上的控制回路仍然采用PID结构。在控制理论和技术飞跃发展的今天,PID控制器仍被广泛应用主要是因为其控制结构简单,稳定性能好,可靠性高,易于实现等优点,而且许多高级控制都是以PID控制为基础的。而PID控制效果完全取决于PID参数的整定与优化,因此,PID参数的整定2-6与优化算法显得尤为重要。为了实现最优PID控制, PID参数优化算法已成为国内外控制理论研究的一个热点,由于单纯形法7-8等算法运算量大,而且极易陷入局部最优9,因此需要找一种简单而高效的PID参数优化算法。近年来,随着计算机技术的发展,一些新的智能算法得到了迅速发展和广泛应用,特别是模拟进化算法,在理论研究和应用研究方面都相当活跃。目前,对PID参数优化算法的研究仍在继续,许多期刊不断地发表新的研究成果。本文主要介绍了五种PID参数优化算法,并对PID参数优化算法的发展作一综述。2 PID参数优化简介PID控制器由比例,积分和微分环节组成,其控制规律可表示为: (1)将式(1)写成传递函数形式: (2)其中,为比例系数;为积分时间常数;为微分时间常数。PID参数优化通常由两部分组成,分别为目标函数与优化算法的选取。PID参数优化的目标函数通常是控制系统性能指标的定量描述,而控制系统的性能指标通常包括动态和静态两个方面。动态性能指标用于反应控制系统的瞬态响应情况,体现在:(1)控制系统的准确性或控制精度,通常用稳态误差来描述,它表示系统输出稳态值与期望值之差3;(2)响应的快速性,通常用上升时间(系统输出值第一次达到稳态值的时间)来定量描述;(3)控制系统的稳定性,通常用超调量和调节时间来描述。PID控制器的比例环节可以缩短系统响应时间,积分环节可以减小系统稳态误差,微分环节可以改善系统超调量,因此,可以通过调整,这三个参数来改善动态性能指标,使系统的控制性能达到给定的要求。从优化的角度来说,就是在这三个变量的参数空间寻找最优值,使系统的控制性能达到最优。3 PID参数优化算法3.1 基于遗传算法的PID参数优化遗传算法(Genetic Algoricthm-GA)是一种新发展起来的优化算法,它起源于60年代对自然和人工自适应系统的研究。从60年代起,密执根大学的Hollstien,Bagley和Rosenberg等人的博士论文即与遗传算法密切相关,而John H.Holland教授1975年出版的Adaptation in Natual and Artificial Systems11一书被认为是遗传算法的经典之作,该书给出了遗传算法的基本定理,并给出了大量的数学理论证明。David E.Goldberg教授1989年出版的Genetic Algorithms12一书通常认为是对遗传算法的方法、理论及应用的全面系统的总结,它的出版标志着遗传算法的诞生。遗传算法是模拟生物在自然环境中的遗传和进化进程而形成的一种自适应全局优化概率搜索算法,其基本思想是,将待求解问题转换成由个体组成的演化群体和对该群体进行操作的一组遗传算子,经历生成评价选择操作的演化过程,反复进行,直到搜索到最优解。遗传算法的基本特点是:(1)它是对所求参数对应染色体进行进化,而不是对参数本身,因此不受目标函数约束条件的限制,也不受搜索空间的限制;(2)它是对参数表示成的二进制编码串群体进行搜索,而不是在单个点上寻优,这大大减小了陷入局部最优的可能性,具有全局快速收敛的特点;(3)它只需已知目标函数及适应度函数便可开始操作;(4)其初始群体是随机生成的,可以很快到达最优解附近;(5)它具有并行性,即用较少的编码串对数量较大的区域完成搜索;(6)其缺点是实时性不好,容易出现早熟现象,对于系统中的反馈信息利用却无能为力,而且求解到一定范围时往往做大量无为的冗余迭代,求解最优解的效率较低。毛敏13等用基本的遗传算法对PID参数进行了优化,但在优化一些复杂问题时有着不可忽视的缺点,而且基本遗传算法收敛速度慢,容易早熟,这就使得该算法的优化性能大大降低;范敏提出了基于多种群遗传算法的优化方法,并将其与下山单纯形法相结合,用下山单纯形法进行局部优化,加快了收敛速度,避免了早熟现象的发生,实现了快速优化求解,并得到了比基本遗传算法更为理想的控制效果;陈亚娟14利用遗传算法工具箱 (GAOT)对PID控制器参数进行优化,并进行算子组合和改进,大大简化了遗传算法的设计过程,为遗传算法的推广和应用提供了良好的工具;伍铁斌15等将遗传算法和混沌优化方法相结合,利用混沌变量的遍历性、随机性和规律性生成初始种群,在遗传算法的基本步骤中加入混沌搜索,大大提高了局部搜索能力,有效地避免了早熟以及局部最优现象的发生。3.2 基于蚁群算法的PID参数优化蚁群算法由意大利学者M.Dorigo,V.Maniez-zo,A.Colorini16等人根据蚂蚁群体具有智能的特点首先提出,当时他们称之为蚁群系统,后来M.Dorigo等为了其他学者研究的方便,将各种蚂蚁算法统称为蚁群算法,并为该算法提出了一个统一的框架结构模型。蚁群算法是90年代初期才提出的一种新型的进化算法,虽然其起步较晚,但是对蚁群算法的研究已引起了国际上学者们的广泛关注。蚁群算法是一种基于种群的启发式仿生进化算法,其基本思想来源于蚂蚁之间的交流过程。外出觅食的蚂蚁在自己经过的路上留下一定数量的信息素,信息素一方面会随着时间的流逝而挥发,另一方面,当有其他的蚂蚁再次经过该路径时会再次留下信息素以加强该处的信息素。在任何一个路口,蚂蚁会按照概率选择任意一个方向前进,在信息素浓度较高的方向具有较大的选择概率。蚁群算法的基本特点是:(1)其原理是一种正反馈机制,它通过信息素的累积和更新收敛于最优路径;(2)它是一种通用型随机优化算法,但人工蚁群算法决不是对蚂蚁的简单模拟,它融进了人类的智能;(3)它具有分布式并行搜索能力,该计算机制易于与其它算法结合;(4)它是一种全局优化的算法,可用于任何一类优化问题;(5)它有较强的鲁棒性;(6)其缺点是初期信息素匮乏,求解速度较慢,计算时间较长。谭冠政17等鉴于PID参数整定问题与TSP问题的差异,将蚁群算法进行修改,进而对PID参数进行优化,设计出一种具有不完全微分的最优PID控制器,仿真结果表明,与传统的PID控制器设计方法相比,该设计方法具有更优良的控制性能和鲁棒性能,可以用来控制多种不同的对象和过程;詹士昌18等鉴于蚁群算法鲁棒性强、适于并行处理、实现和操作简单的优点,提出了将蚁群算法应用于PID参数优化,但随着优化空间维数和参与搜索蚂蚁组的增加,该算法的搜索效率大大降低,因而在多维空间优化问题中有必要探讨出一种更有效的蚁群算法模型,以提高搜索效率;段海滨19等针对传统的PID控制器参数多采用试验加试凑的方式由人工进行优化,提出了一种新型的基于蚁群算法的PID参数优化策略,它可以提高控制系统设计的品质和实现效率,降低系统设计的难度;贺慧杰20将遗传算法和蚁群算法相结合对PID参数进行优化,可以较好地控制复杂的对象,但是,一旦外界扰动发生时,必须重新根据需要再进行参数的整定优化;陈建涛21等用高斯分布较好的局部搜索能力来增强蚁群算法的局部寻优能力,很好地弥补了基本蚁群算法易于陷入局部最优的缺点,且该算法不依赖于被控对象的精确数学模型,有着很好的适应性和鲁棒性;陈阳22等将改进的蚁群算法应用于PID控制器的参数优化中,通过较少的试验次数就能很得到令人满意的结果,有效地加快了收敛速度,改善了寻优性能。3.3 基于粒子群算法的PID参数优化粒子群(Particle Swarm Optimization,PSO)算法是由Kennedy和Eberhart23博士于1995年受鸟类群体行为研究结果的启发,而提出的一种基于群体智能的进化计算技术。在PSO算法中,每个粒子代表解空间的一个候选解,粒子在搜索空间以一定的速度飞行,飞行速度根据飞行经验进行动态调整。该算法基于群智能的并行全局搜索策略,采用速度-位置搜索模型实现对整个空间的寻优操作。PSO算法是模仿生物社会性行为而得出的一种全局优化算法,是一种高效、简单的并行搜索算法,其优点在于概念简单、实现容易、鲁棒性好,并且能以较大概率收敛到全局最优,而且它对所优化目标的先验知识要求甚少,一般只需知道其数值关系即可。但是,该算法的惯性权重对算法性能具有很大的影响,另外,在初始群体的生成上,它是根据经验估计出PID三个参数的取值范围,并在此范围内采用随机生成的方式,对其可行解空间进行搜索的,因此需要合理估计PID三个参数的取值范围。杨诚24等针对全局版标准PSO算法容易陷入局部极值点这一缺点,提出了实数编码的局部版标准PSO算法,采用该算法搜索所得的解比全局版算法更优,但速度较慢;熊伟丽25等对标准PSO算法进行了改进,提出了一种改进的粒子群算法MWPSO,使惯性权重具有了一定的灵活性,同时,该算法在收敛的情况下,所有粒子都向最优解的方向飞去,从而粒子趋于同一化的问题进行了改进,为改善系统的过渡性能和动态特性,还在目标函数中加入控制输入的平方项,并采用了惩罚功能,使得相同迭代次数下该算法的性能指标远远优于遗传算法;李凌舟26等提出一种改进的微粒群优化算法(IPSO),该算法是在基本PSO算法的惯性权重部分加入一个调节因子项,实现惯性权重的非线性调整,并通过调节因子的调节,使得算法的前期有较大的收敛速度,后期则能以较大的概率收敛到全局最优;刘丹丹27等针对早期粒子群算法中二进制编码的码位长、转化为浮点数繁琐且不精确等问题,提出了一种采用实数编码的改进PSO算法,该算法用三维空间的一个粒子表示PID的三个参数,并在PID三个参数的取值范围内采用随机生成的方式进行搜索,是一种寻优简单、鲁棒性强、易于并行化的寻优方法;郭成28等针对微粒群优化算法存在的早熟问题,提出了一种基于T-S模型的模糊自适应PSO算法(T-SPSO算法),该算法通过T-S规则,动态自适应更新惯性权重取值,使得算法前期以较大惯性权重值保证算法的全局搜索能力,而后期则以较小惯性权重值加快收敛,从而有效解决了PSO算法的早熟问题,改善了算法的收敛性。3.4 基于模糊推理的PID参数优化在自动控制技术产生之前,人们在生产过程中只能采用手动控制方式。手动控制过程首先是通过观测被控对象的输出,其次是根据观测结果作出决策,然后手动调整输入,操作工人就是这样不断地观测决策调整,实现对生产过程的手动控制。这三个步骤分别是由人的眼脑手来完成的。后来,由于科学和技术的进步,人们逐渐采用各种测量装置代替人的眼,完成对被控制量的观测任务;利用各种控制器部分地取代人脑的作用,实现比较、综合被控制量与给定量之间的偏差,控制器所给出的输出信号相当于手动控制过程中人脑的决策;使用各种执行机构对被控对象施加某种控制作用,这就起到了手动控制中手的调整作用29。经过人们长期研究和实践形成的经典控制理论,对于解决线性定常系统的控制问题是很有效的。然而,经典控制理论对于非线性时变系统难以奏效。随着计算机尤其是微机的发展和应用,自动控制理论和技术获得了飞跃的发展。基于状态变量描述的现代控制理论对于解决线性或非线性、定常或时变的多输入多输出系统问题,获得了广泛的应用。但是,无论采用经典控制理论还是现代控制理论设计一个控制系统,都需要事先知道被控制对象精确的数学模型,然后根据数学模型以及给定的性能指标,选择适当的控制规律,进行控制系统设计。PID控制器设计的关键在于如何合理地确定比例、积分、微分参数的大小,工程上大多是根据对象特性,通过临界比例度法、衰减曲线法、Z-N法及C-C法等方法来确定PID参数的初始值,然后进行人工在线整定。PID参数整定是一个经验性很强的工作,而且一旦PID参数确定后,就不可以根据系统运行的情况自动地进行调整,因此,采用传统的PID控制器设计方法很难设计出高性能的控制器,且系统的鲁棒性和自适应性都比较差。然而,在许多情况下被控对象(或生产过程)的精确数学模型很难建立,或系统参数不能通过有效的测量手段来获得,或控制理论的技术难以采用时,就难以进行自动控制。自1965年L.A.Zadeh提出模糊集的概念以来,关于模糊系统的研究得到了飞速的发展,随后模糊控制技术也被广泛应用于工业控制过程中,并取得了令人瞩目的成就。模糊推理是模糊控制的理论基础,该算法就是运用模糊数学的基本理论和方法,把控制规则的条件、操作用模糊集表示,并把这些模糊控制规则以及有关信息(评价指数,初始PID参数等)作为知识存入计算机知识库中,然后计算机会根据控制系统的实际响应情况 (即专家系统的输入条件),运用模糊推理自动实现对PID参数的整定。鉴于PID参数整定的规则过多会使系统实施起来比较复杂,赵肇田30等提出了一种单参数智能PID模糊控制器的设计思路,它将人工气候室温度变化模型近似为一阶惯性纯时滞环节,用可控率指标对其能控性和受控程度进行归类分析,通过模糊决策来对其控制器的PID参数进行调整,用模糊规则进行推理,模糊规则采用产生式表示方式,即IF(条件)THEN(结果)形式,并且它对不同的控制指标和被控对象均能实现PID最佳调整,是一种实施简单,性能良好,易于工程实现的方法;曾晓红31等首先利用遗传算法的全局优化能力优化PID参数,得到PID参数的初始值,然后根据系统当前的误差和误差变化率,用模糊推理方法在线优化调整PID参数的权值来动态地调整参数,抗干扰强,灵敏性较好。3.5 基于神经网络的PID参数优化人工神经网络(artificial neural network,简称ANN)是由大量简单人工神经元互联而成的一种计算结构。它可以在某种程度上模拟生物神经系统的工作过程,从而具备解决实际问题的能力。人工神经网络由于其大规模并行处理、学习、联想和记忆等功能,以及它的高度自组织和自适应能力,并且能够充分任意地逼近任何复杂的非线性系统,所有定量和定性分析都等势分布储存于神经网络内的各种神经元中,具有很强的信息综合能力,能够学习和适应严重不确定系统的动态特性,有很强的鲁棒性和容错性,可以处理那些难以用模型和规则描述的过程,因此,神经网络已成为解决许多工程问题的有力工具,并且在一些不确定系统的控制中已成功应用。Hopfield神经网络(Hopfield Neural Network,HNN)是Hopfield于1982年提出的反馈神经网络模型,简称Hopfield网络。由于网络中引入了反馈,所以它是一个非线性动力学系统。通常非线性动力学系统最关心的是系统的稳定性问题,在Hopfield模型中,神经网络之间的联系总是设为对称的,这保证了系统最终会达到一个固定的有序状态,即稳定状态。利用该特性,可以将Hopfield网络用于联想记忆,也可以用来对组合优化问题进行求解32。人工鱼群算法(Artificial Fish-Swarm Algorithm,AFSA)是2002年提出的一种基于动物行为的智能寻优算法,目前处于新的研究改进阶段。该算法采用自下而上的设计方法,通过模拟鱼群的觅食和生存活动来实现在空间中寻求全局最优。在这种群体活动过程中,没有统一的协调者,而是通过每个鱼类个体的自适应性行为而达到寻优的目的。它从构造动物简单的底层行为做起,通过各动物个体的局部寻优行为,最终在群体中使全局最优值突现出来。在该算法中,人工鱼有三种行为:觅食、聚群和追尾。每条人工鱼搜索当前所处环境的状态,并按照 “食物最多原则”或 “食物增加原则”,从三种行为中选择一个合适的行为,使得各个人工鱼不断地向最优方向前进,最终全部人工鱼集中在几个局部极值的周围,且较优的极值区域周围一般能集中较多的人工鱼。该算法本质上是一种基于比较目标函数值的搜索方法,无需目标函数的梯度值,因此,可以克服局部极值,取得全局极值,并且由于该算法只需要目标函数的函数值,所以对搜索空间具有一定的自适应能力。汪蓓蕾33提出一种将人工鱼群算法与Hopfield神经网络融合的PID参数优化算法,该算法前期利用鱼群算法快速随机的群体性全局搜索能力生成问题较优的可行解域,后期则利用Hopfield神经网络简单、快速、易实现的优点得到最优解,该算法有效弥补了Hopfield网络对初始值过于依赖且容易陷入局部极值的缺陷.;韩伟34利用神经网络来逼近实际系统,用闭环控制下所得的观测数据进行系统在线辨识,并针对不同的系统建立不同的对象模型,并在该模型的基础上,运用遗传算法进行PID参数寻优,取得了较好的控制效果;何军旗35等鉴于遗传算法虽能求取全局解,但收敛速度慢,而基于神经网络的控制器结构简单、可塑性强,但容易陷入局部解,提出将遗传算法和BP神经网络相结合进行PID参数优化,以达到整体优化的目的,这样得到的系统动态性能更好,调节精度更高。4小结PID控制器是整个控制系统的核心,它的控制作用以及参数对控制品质有直接影响。目前,PID参数优化算法很多,但是,无论哪种优化算法,都不是万能的,它们都各有长处和不足,都有一定的适用范围。以上介绍的参数优化算法也只是其中比较有代表性的算法,对其研究已经取得一定的成果,但仍有许多不足之处,有待进一步研究。因此,可以通过进一步地改进算法使得PID控制器性能得到优化。从目前PID参数优化算法的研究现状来看,以下几个方面将是今后一段时间内研究和实践的重点。(1)遗传算法具有快速随机的全局搜索能力,但对于系统中的反馈信息利用却无能为力,而且求解到一定范围时往往做大量无为的冗余迭代,求精确解的效率较低;而蚁群算法是通过信息素的累积和更新收敛于最优路径,具有分布式并行全局搜索能力,但初期信息素匮乏,求解速度较慢,文献36将遗传算法与蚁群算法相结合,用遗传算法生成信息素分布,用蚁群算法求解TSP问题的最优解。因此,可以根据PID参数整定问题与TSP问题的差异,将遗传算法与蚁群算法相结合进行PID参数寻优;(2)由于基本的粒子群算法易陷入局部极小值点,且搜索精度不高,因此,可以利用混沌序列的“遍历性、随机性、规律性”,在其中加入混沌细搜索,使得局部搜索能力大大提高;(3)鉴于蚁群算法具有分布式并行搜索能力,且易于与其它算法结合,是一种全局优化的算法,因此,可以利用蚁群算法的全局优化能力优化PID参数,得到PID参数的初始值,然后根据系统当前的误差和误差变化率,用模糊推理方法在线优化调整PID参数的权值来动态地调整参数;(4)由于人工神经网络能够充分任意地逼近任何复杂的非线性系统,能够学习和适应严重不确定系统的动态特性,有很强的鲁棒性和容错性,可以处理那些难以用模型和规则描述的过程,因此,可以用神经网络来逼近实际系统,用闭环控制下所得的观测数据进行系统在线辨识,并针对不同的系统建立不同的对象模型,并在该模型的基础上,运用蚁群算法进行PID参数寻优;(5)除了对各种算法继续进行全面深入的研究外,还应考虑将各种算法互相结合,互相渗透,充分发挥各自的优势,并且希望能更多地结合实际工程应用,扩展各算法的应用领域,从而进一步提高控制系统的性能,实现PID最优控制。参考文献1 王正林,郭阳宽.过程控制与Simulink应用M.北京:电子工业出版社,2006.2Min Xu,Shaoyuan Li,Chenkun Qi,Wenjian Cai.Auto-tuning of PID controller parameters with supervised receding horizon optimizationJ.ISA Transactions,2005,(44):491-500.3C.R.Madhuranthakam,A.Elkamel,H.Budman.Optimal tuning of PID controllers for FOPTD,SOPTD and SOPTD with lead processesJ.Chemical Engineering and Processing,2008,(47):251-264.4 G.P.Liua,S.Daleyb.Optimal-tuning PID control for industrial systemsJ.Control Engineering Practice,2001,(9):1185-1194.5 Chih-Cheng Kao,Chin-Wen Chuang,Rong-Fong Fung.The self-tuning PID control in a slidercrank mechanism system by applying particle swarm optimization approachJ.Mechatronics,2006,(16):513522.6 LUC LORON.Tuning of PID Controllers by the Non-symmetrica lOptimum MethodJ.Automatica,1997,33(1):103-107.7 张磊.基于单纯形法的PID控制器的最优设计J.信息与控制,2004,33(3):376-379.8 王伟,于军琪.基于单纯形法的最优PID控制器设计J.装备制造技术,2009,(6):77-78.9 张静.基于混沌搜索优化方法的PID控制器设计J.襄樊学院学报,2001,22(2):63-70.10 范敏.基于多种群遗传算法的PID控制器参数优化技术研究J.软件导刊,2008,7(3):112-114.11 John H.Holland.Adaptation in Natual and Artificial SystemsM.The MIT Press,1975.12David E.Goldberg.Genetic AlgorithmsM.Pearson Education,1989.13 毛敏,于希宁. 基于遗传算法的PID参数优化方法J.中国电力,2002,35(8):48-51.14 陈亚娟.基于MATLAB遗传算法工具箱的PID参数优化研究J.科技信息,2008,(26):69-70.15 伍铁斌,成运,周桃云等.基于混沌遗传算法的PID参数优化J.计算机仿真,2009,26(5):202-204.16 Colorni A,Dorigo M,Maniezzo V,et al.Ant system for job shop schedulingJ.Belgian J. of Operations Research Statistics and computer sicence,1994,34(1):39-53.17 谭冠政,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论