宁国市三中2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
宁国市三中2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
宁国市三中2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
宁国市三中2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
宁国市三中2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

宁国市三中2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 “m=1”是“直线(m2)x3my1=0与直线(m+2)x+(m2)y+3=0相互垂直”的( )A必要而不充分条件B充分而不必要条件C充分必要条件D既不充分也不必要条件2 数列1,4,7,10,(1)n(3n2)的前n项和为Sn,则S11+S20=( )A16B14C28D303 已知点P(1,),则它的极坐标是( )ABCD4 冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示杂质高杂质低旧设备37121新设备22202根据以上数据,则( )A含杂质的高低与设备改造有关B含杂质的高低与设备改造无关C设备是否改造决定含杂质的高低D以上答案都不对5 椭圆=1的离心率为( )ABCD6 如图,在长方形ABCD中,AB=,BC=1,E为线段DC上一动点,现将AED沿AE折起,使点D在面ABC上的射影K在直线AE上,当E从D运动到C,则K所形成轨迹的长度为( )ABCD7 若cos()=,则cos(+)的值是( )ABCD8 给出下列结论:平行于同一条直线的两条直线平行;平行于同一条直线的两个平面平行;平行于同一个平面的两条直线平行;平行于同一个平面的两个平面平行其中正确的个数是( )A1个 B2个 C3个 D4个9 已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为( )ABCD =0.08x+1.2310已知双曲线,分别在其左、右焦点,点为双曲线的右支上的一点,圆为三角形的内切圆,所在直线与轴的交点坐标为,与双曲线的一条渐近线平行且距离为,则双曲线的离心率是( )A B2 C D11已知函数f(x)=log2x,在下列区间中,包含f(x)零点的区间是( )A(0,1)B(1,2)C(2,4)D(4,+)12如果对定义在上的函数,对任意,均有成立,则称函数为“函数”.给出下列函数:;其中函数是“函数”的个数为( )A1 B2 C3 D 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大二、填空题13在等差数列中,公差为,前项和为,当且仅当时取得最大值,则的取值范围为_.14若全集,集合,则 。15函数f(x)=的定义域是16已知(1+x+x2)(x)n(nN+)的展开式中没有常数项,且2n8,则n=17已知函数f(x)=,若关于x的方程f(x)=k有三个不同的实根,则实数k的取值范围是18函数y=1(xR)的最大值与最小值的和为2 三、解答题19已知函数且f(1)=2(1)求实数k的值及函数的定义域;(2)判断函数在(1,+)上的单调性,并用定义加以证明20(本小题满分12分)ABC的三内角A,B,C的对边分别为a,b,c,AD是BC边上的中线(1)求证:AD;(2)若A120,AD,求ABC的面积21已知在等比数列an中,a1=1,且a2是a1和a31的等差中项(1)求数列an的通项公式;(2)若数列bn满足b1+2b2+3b3+nbn=an(nN*),求bn的通项公式bn22已知函数f(x)=2cos2x+2sinxcosx1,且f(x)的周期为2()当时,求f(x)的最值;()若,求的值23已知不等式ax23x+64的解集为x|x1或xb,(1)求a,b;(2)解不等式ax2(ac+b)x+bc024已知函数f(x)=2cosx(sinx+cosx)1()求f(x)在区间0,上的最大值;()在ABC中,内角A,B,C的对边分别为a,b,c,且f(B)=1,a+c=2,求b的取值范围宁国市三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】解:当m=0时,两条直线方程分别化为:2x1=0,2x2y+3=0,此时两条直线不垂直,舍去;当m=2时,两条直线方程分别化为:6y1=0,4x+3=0,此时两条直线相互垂直;当m0,2时,两条直线相互垂直,则=1,解得m=1综上可得:两条直线相互垂直的充要条件是:m=1,2“m=1”是“直线(m2)x3my1=0与直线(m+2)x+(m2)y+3=0相互垂直”的充分不必要条件故选:B【点评】本题考查了直线相互垂直的充要条件、充要条件的判定,考查了分类讨论方法、推理能力与计算能力,属于中档题2 【答案】B【解析】解:an=(1)n(3n2),S11=()+(a2+a4+a6+a8+a10)=(1+7+13+19+25+31)+(4+10+16+22+28)=16,S20=(a1+a3+a19)+(a2+a4+a20)=(1+7+55)+(4+10+58)=+=30,S11+S20=16+30=14故选:B【点评】本题考查数列求和,是中档题,解题时要认真审题,注意分组求和法和等差数列的性质的合理运用3 【答案】C【解析】解:点P的直角坐标为,=2再由1=cos, =sin,可得,结合所给的选项,可取=,即点P的极坐标为 (2,),故选 C【点评】本题主要考查把点的直角坐标化为极坐标的方法,属于基础题4 【答案】 A【解析】独立性检验的应用【专题】计算题;概率与统计【分析】根据所给的数据写出列联表,把列联表的数据代入观测值的公式,求出两个变量之间的观测值,把观测值同临界值表中的数据进行比较,得到有99%的把握认为含杂质的高低与设备是否改造是有关的【解答】解:由已知数据得到如下22列联表杂质高杂质低合计旧设备37121158新设备22202224合计59323382由公式2=13.11,由于13.116.635,故有99%的把握认为含杂质的高低与设备是否改造是有关的【点评】本题考查独立性检验,考查写出列联表,这是一个基础题5 【答案】D【解析】解:根据椭圆的方程=1,可得a=4,b=2,则c=2;则椭圆的离心率为e=,故选D【点评】本题考查椭圆的基本性质:a2=b2+c2,以及离心率的计算公式,注意与双曲线的对应性质的区分6 【答案】 D【解析】解:由题意,将AED沿AE折起,使平面AED平面ABC,在平面AED内过点D作DKAE,K为垂足,由翻折的特征知,连接DK,则DKA=90,故K点的轨迹是以AD为直径的圆上一弧,根据长方形知圆半径是,如图当E与C重合时,AK=,取O为AD的中点,得到OAK是正三角形故K0A=,K0D=,其所对的弧长为=,故选:D7 【答案】B【解析】解:cos()=,cos(+)=cos=cos()=故选:B8 【答案】B【解析】考点:空间直线与平面的位置关系【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与直线平行的判定与性质、直线与平面平行的判定与性质的应用,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直线与直线平行和直线与平面平行的判定与性质是解答的关键 9 【答案】C【解析】解:法一:由回归直线的斜率的估计值为1.23,可排除D由线性回归直线方程样本点的中心为(4,5),将x=4分别代入A、B、C,其值依次为8.92、9.92、5,排除A、B法二:因为回归直线方程一定过样本中心点,将样本点的中心(4,5)分别代入各个选项,只有C满足,故选C【点评】本题提供的两种方法,其实原理都是一样的,都是运用了样本中心点的坐标满足回归直线方程10【答案】C【解析】试题分析:由题意知到直线的距离为,那么,得,则为等轴双曲线,离心率为.故本题答案选C. 1考点:双曲线的标准方程与几何性质【方法点睛】本题主要考查双曲线的标准方程与几何性质.求解双曲线的离心率问题的关键是利用图形中的几何条件构造的关系,处理方法与椭圆相同,但需要注意双曲线中与椭圆中的关系不同.求双曲线离心率的值或离心率取值范围的两种方法:(1)直接求出的值,可得;(2)建立的齐次关系式,将用表示,令两边同除以或化为的关系式,解方程或者不等式求值或取值范围.11【答案】C【解析】解:f(x)=log2x,f(2)=20,f(4)=0,满足f(2)f(4)0,f(x)在区间(2,4)内必有零点,故选:C12【答案】第二、填空题13【答案】【解析】试题分析:当且仅当时,等差数列的前项和取得最大值,则,即,解得:.故本题正确答案为.考点:数列与不等式综合.14【答案】|01【解析】,|01。15【答案】x|x2且x3 【解析】解:根据对数函数及分式有意义的条件可得解可得,x2且x3故答案为:x|x2且x316【答案】5【解析】二项式定理【专题】计算题【分析】要想使已知展开式中没有常数项,需(x)n(nN+)的展开式中无常数项、x1项、x2项,利用(x)n(nN+)的通项公式讨论即可【解答】解:设(x)n(nN+)的展开式的通项为Tr+1,则Tr+1=xnrx3r=xn4r,2n8,当n=2时,若r=0,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n2;当n=3时,若r=1,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n3;当n=4时,若r=1,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n4;当n=5时,r=0、1、2、3、4、5时,(1+x+x2)(x)n(nN+)的展开式中均没有常数项,故n=5适合题意;当n=6时,若r=1,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n6;当n=7时,若r=2,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n7;当n=8时,若r=2,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n2;综上所述,n=5时,满足题意故答案为:5【点评】本题考查二项式定理,考查二项展开式的通项公式,突出考查分类讨论思想的应用,属于难题17【答案】(0,1) 【解析】解:画出函数f(x)的图象,如图示:令y=k,由图象可以读出:0k1时,y=k和f(x)有3个交点,即方程f(x)=k有三个不同的实根,故答案为(0,1)【点评】本题考查根的存在性问题,渗透了数形结合思想,是一道基础题18【答案】2【解析】解:设f(x)=,则f(x)为奇函数,所以函数f(x)的最大值与最小值互为相反数,即f(x)的最大值与最小值之和为0将函数f(x)向上平移一个单位得到函数y=1的图象,所以此时函数y=1(xR)的最大值与最小值的和为2故答案为:2【点评】本题考查了函数奇偶性的应用以及函数图象之间的关系,奇函数的最大值和最小值互为相反数是解决本题的关键三、解答题19【答案】 【解析】解:(1)f(1)=1+k=2;k=1,定义域为xR|x0;(2)为增函数;证明:设x1x21,则:=;x1x21;x1x20,;f(x1)f(x2);f(x)在(1,+)上为增函数20【答案】【解析】解:(1)证明:D是BC的中点,BDDC.法一:在ABD与ACD中分别由余弦定理得c2AD22ADcosADB,b2AD22ADcosADC,得c2b22AD2,即4AD22b22c2a2,AD.法二:在ABD中,由余弦定理得AD2c22ccos Bc2ac,AD.(2)A120,AD,由余弦定理和正弦定理与(1)可得a2b2c2bc,2b22c2a219,联立解得b3,c5,a7,ABC的面积为Sbc sin A35sin 120.即ABC的面积为.21【答案】 【解析】解:(1)设等比数列an的公比为q,由a2是a1和a31的等差中项得:2a2=a1+a31,2q=q2,q0,q=2,;(2)n=1时,由b1+2b2+3b3+nbn=an,得b1=a1=1n2时,由b1+2b2+3b3+nbn=an b1+2b2+3b3+(n1)bn1=an1得:,【点评】本题考查等差数列和等比数列的通项公式,考查了数列的递推式,解答的关键是想到错位相减,是基础题22【答案】 【解析】(本题满分为13分)解:()=,T=2,当时,f(x)有最小值,当时,f(x)有最大值2()由,所以,所以,而,所以,即23【答案】 【解析】解:(1)因为不等式ax23x+64的解集为x|x1或xb,所以x1=1与x2=b是方程ax23x+2=0的两个实数根,且b1由根与系的关系得,解得,所以得(2)由于a=1且 b=2,所以不等式ax2(ac+b)x+bc0,即x2(2+c)x+2c0,即(x2)(xc)0当c2时,不等式(x2)(xc)0的解集为x|2xc;当c2时,不等式(x2)(xc)0的解集为x|cx2;当c=2时,不等式(x2)(xc)0的解集为综上所述:当c2时,不等式ax2(ac+b)x+bc0的解集为x|2xc;当c2时,不等式ax2(ac+b)x+bc0的解集为x|cx2;当c=2时,不等式ax2(ac+b)x+bc0的解集为【点评】本题考查一元二次不等式的解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论