2015高考数学(理科)应用题精选试卷及答案.doc_第1页
2015高考数学(理科)应用题精选试卷及答案.doc_第2页
2015高考数学(理科)应用题精选试卷及答案.doc_第3页
2015高考数学(理科)应用题精选试卷及答案.doc_第4页
2015高考数学(理科)应用题精选试卷及答案.doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2015高考数学(理科)应用题精选试卷及答案 1.某工厂要建造一个长方体无盖贮水池,其容积为4800,深为3,如果池底每平方米的造价为150元,池壁每平方米的造价为120元,记该水池底面一边的长度,该水池的总造价为元.()写出关于的函数表达式;()怎样设计水池能使总造价最低?最低总造价是多少元?解:()因水池底面一边的长度为,则另一边的长度为,-1分根据题意,得150120(2323) -5分240000720() 所求的函数表达式为:720()240000 -6分()由()得720()2400007202240000 -9分720240240000297600. -10分当且仅当,即40时, y有最小值297600. 此时另一边的长度为=40(-11分)因此,当水池的底面是边长为40 的正方形时,水池的总造价最低,最低总造价是297600元. -12分2.某化工企业2007年底投入100万元,购入一套污水处理设备该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元(1)求该企业使用该设备年的年平均污水处理费用(万元);(2)问为使该企业的年平均污水处理费用最低,该企业几年后需要重新更换新的污水处理设备? 解:(1)即(); (2)由均值不等式得:(万元) 当且仅当,即时取到等号答:该企业10年后需要重新更换新设备3.某种商品原来每件售价为25元,年销售8万件(1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x元公司拟投入 (x2600) 万元作为技改费用,投入50万元作为固定宣传费用,投入 x万元作为浮动宣传费用试问:当该商品明年的销售量a至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时每件商品的定价解:(1)设每件定价为t元,依题意,有t258,整理得t265t1 0000,解得25t40.因此要使销售的总收入不低于原收入,每件定价最多为40元(2)依题意,x25时,不等式ax25850(x2600)x有解,等价于x25时,ax有解x2 10(当且仅当x30时,等号成立),a10.2.因此当该商品明年的销售量a至少应达到10.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元4.为了响应国家号召,某地决定分批建设保障性住房供给社会首批计划用100万元购得一块土地,该土地可以建造每层1 000平方米的楼房,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高20元已知建筑第5层楼房时,每平方米建筑费用为800元(1)若建筑第x层楼时,该楼房综合费用为y万元(综合费用是建筑费用与购地费用之和),写出yf(x)的表达式;(2)为了使该楼房每平方米的平均综合费用最低,应把楼层建成几层?此时平均综合费用为每平方米多少元?解:(1)由题意知建筑第1层楼房每平方米建筑费用为720元,建筑第1层楼房建筑费用为7201 000720 000(元)72 (万元),楼房每升高一层,整层楼建筑费用提高201 00020 000(元)2(万元),建筑第x层楼房的建筑费用为72(x1)22x70(万元),建筑第x层楼时,该楼房综合费用为yf(x)72x2100x271x100,综上可知yf(x)x271x100(x1,xZ)(2)设该楼房每平方米的平均综合费用为g(x),则g(x)10x7102 710910.当且仅当10x,即x10时等号成立综上可知应把楼层建成10层,此时平均综合费用最低,为每平方米910元0100200300100200300400500yxlM5.(2007山东)本公司计划2008年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为元/分钟和200元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告,能给公司事来的收益分别为0.3万元和0.2万元问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?解:设公司在甲电视台和乙电视台做广告的时间分别为分钟和分钟,总收益为元,由题意得目标函数为二元一次不等式组等价于作出二元一次不等式组所表示的平面区域,即可行域如图:作直线,即平移直线,从图中可知,当直线过点时,目标函数取得最大值联立解得点的坐标为(元)答:该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元6.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨)标准煤的几组对照数据.(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程=x+;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:32.5+43+54+64.5=66.5)解 (1)散点图如下图:(2)=4.5,=3.5=32.5+43+45+64.5=66.5.=32+42+52+62=86=0.7 =-=3.5-0.74.5=0.35.所求的线性回归方程为=0.7x+0.35.(3)现在生产100吨甲产品用煤y=0.7100+0.35=70.35,降低90-70.35=19.65(吨)标准煤.7. .某班共有学生40人,将一次数学考试成绩(单位:分)绘制成频率分布直方图,如图所示(1)请根据图中所给数据,求出a的值;(2)从成绩在50,70)内的学生中随机选3名学生,求这3名学生的成绩都在60,70)内的概率;(3)为了了解学生本次考试的失分情况,从成绩在50,70)内的学生中随机选取3人的成绩进行分析,用X表示所选学生成绩在60,70)内的人数,求X的分布列和数学期望解:(1)根据频率分布直方图中的数据,可得,所以 2分(2)学生成绩在内的共有400.05=2人,在内的共有400.225=9人,成绩在内的学生共有11人 4分设“从成绩在的学生中随机选3名,且他们的成绩都在内”为事件A,则所以选取的3名学生成绩都在内的概率为 6分(3)依题意,的可能取值是1,2,3 7分; ; 10分所以的分布列为123 12分8.为了调查我市在校中学生参加体育运动的情况, 从中随机抽取了16名男同学和14名女 同学,调查发现,男、女同学中分别有12人和6人喜爱运动,其余不喜爱。 (1)根据以上数据完成以下22列联表:喜爱运动不喜爱运动总计男16女14总计30 (2)根据列联表的独立性检验,能否在犯错误的概率不超过0.010的前提下认为性别与喜爱运动有关? (3)将以上统计结果中的频率视作概率, 从我市中学生中随机抽取3人,若其中喜爱运动的人数为,求的分布列和均值。解:(1)喜爱运动不喜爱运动总计男12416女6814总计181230 (2)假设:是否喜爱运动与性别无关,由已

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论