




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷青羊区二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知向量,若,则实数( )A. B.C. D. 【命题意图】本题考查向量的概念,向量垂直的充要条件,简单的基本运算能力2 在数列中,则该数列中相邻两项的乘积为负数的项是( )A和 B和 C和 D和3 已知双曲线,分别在其左、右焦点,点为双曲线的右支上的一点,圆为三角形的内切圆,所在直线与轴的交点坐标为,与双曲线的一条渐近线平行且距离为,则双曲线的离心率是( )A B2 C D4 “x0”是“x0”是的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件5 下列函数中,既是偶函数又在单调递增的函数是( )A B C D6 阅读下面的程序框图,则输出的S=( )A14B20C30D557 已知函数()在定义域上为单调递增函数,则的最小值是( )A B C D 8 已知条件p:x2+x20,条件q:xa,若q是p的充分不必要条件,则a的取值范围可以是( )Aa1Ba1Ca1Da39 设a,b为实数,若复数,则ab=( )A2B1C1D210已知直线l1:(3+m)x+4y=53m,l2:2x+(5+m)y=8平行,则实数m的值为( )A7B1C1或7D11圆心为(1,1)且过原点的圆的方程是( )A2=1B2=1C2=2D2=212过点P(2,2)作直线l,使直线l与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l一共有( )A3条B2条C1条D0条二、填空题13把函数y=sin2x的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为14设所有方程可以写成(x1)sin(y2)cos=1(0,2)的直线l组成的集合记为L,则下列说法正确的是;直线l的倾斜角为;存在定点A,使得对任意lL都有点A到直线l的距离为定值;存在定圆C,使得对任意lL都有直线l与圆C相交;任意l1L,必存在唯一l2L,使得l1l2;任意l1L,必存在唯一l2L,使得l1l215(本小题满分12分)点M(2pt,2pt2)(t为常数,且t0)是拋物线C:x22py(p0)上一点,过M作倾斜角互补的两直线l1与l2与C的另外交点分别为P、Q.(1)求证:直线PQ的斜率为2t;(2)记拋物线的准线与y轴的交点为T,若拋物线在M处的切线过点T,求t的值16已知=1bi,其中a,b是实数,i是虚数单位,则|abi|=17已知,是空间二向量,若=3,|=2,|=,则与的夹角为18曲线在点(3,3)处的切线与轴x的交点的坐标为三、解答题19已知函数f(x)=在(,f()处的切线方程为8x9y+t=0(mN,tR)(1)求m和t的值;(2)若关于x的不等式f(x)ax+在,+)恒成立,求实数a的取值范围20平面直角坐标系xOy中,圆C1的参数方程为(为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C2的极坐标方程为=4sin(1)写出圆C1的普通方程及圆C2的直角坐标方程;(2)圆C1与圆C2是否相交,若相交,请求出公共弦的长;若不相交请说明理由 21某工厂修建一个长方体形无盖蓄水池,其容积为4800立方米,深度为3米池底每平方米的造价为150元,池壁每平方米的造价为120元设池底长方形长为x米()求底面积并用含x的表达式表示池壁面积;()怎样设计水池能使总造价最低?最低造价是多少?22已知函数f(x)=lnxkx+1(kR)()若x轴是曲线f(x)=lnxkx+1一条切线,求k的值;()若f(x)0恒成立,试确定实数k的取值范围23已知不等式ax23x+64的解集为x|x1或xb,(1)求a,b;(2)解不等式ax2(ac+b)x+bc024在正方体中分别为的中点.(1)求证:平面;(2)求异面直线与所成的角.111.Com青羊区二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】由知,解得,故选B.2 【答案】C【解析】考点:等差数列的通项公式3 【答案】C【解析】试题分析:由题意知到直线的距离为,那么,得,则为等轴双曲线,离心率为.故本题答案选C. 1考点:双曲线的标准方程与几何性质【方法点睛】本题主要考查双曲线的标准方程与几何性质.求解双曲线的离心率问题的关键是利用图形中的几何条件构造的关系,处理方法与椭圆相同,但需要注意双曲线中与椭圆中的关系不同.求双曲线离心率的值或离心率取值范围的两种方法:(1)直接求出的值,可得;(2)建立的齐次关系式,将用表示,令两边同除以或化为的关系式,解方程或者不等式求值或取值范围.4 【答案】B【解析】解:当x=1时,满足x0,但x0不成立当x0时,一定有x0成立,“x0”是“x0”是的必要不充分条件故选:B5 【答案】C【解析】试题分析:函数为奇函数,不合题意;函数是偶函数,但是在区间上单调递减,不合题意;函数为非奇非偶函数。故选C。考点:1.函数的单调性;2.函数的奇偶性。6 【答案】C【解析】解:S1=0,i1=1;S2=1,i2=2;S3=5,i3=3;S4=14,i4=4;S5=30,i=54退出循环,故答案为C【点评】本题考查程序框图的运算,通过对框图的分析,得出运算过程,按照运算结果进行判断结果,属于基础题7 【答案】A【解析】试题分析:由题意知函数定义域为,因为函数()在定义域上为单调递增函数在定义域上恒成立,转化为在恒成立,故选A. 1考点:导数与函数的单调性8 【答案】A【解析】解:条件p:x2+x20,条件q:x2或x1q是p的充分不必要条件a1 故选A9 【答案】C【解析】解:,因此ab=1故选:C10【答案】A【解析】解:因为两条直线l1:(3+m)x+4y=53m,l2:2x+(5+m)y=8,l1与l2平行所以,解得m=7故选:A【点评】本题考查直线方程的应用,直线的平行条件的应用,考查计算能力11【答案】D【解析】解:由题意知圆半径r=,圆的方程为2=2故选:D【点评】本题考查圆的方程的求法,解题时要认真审题,注意圆的方程的求法,是基础题12【答案】C【解析】解:假设存在过点P(2,2)的直线l,使它与两坐标轴围成的三角形的面积为8,设直线l的方程为:,则即2a2b=ab直线l与两坐标轴在第二象限内围成的三角形面积S=ab=8,即ab=16,联立,解得:a=4,b=4直线l的方程为:,即xy+4=0,即这样的直线有且只有一条,故选:C【点评】本题考查了直线的截距式、三角形的面积计算公式,属于基础题二、填空题13【答案】y=cosx 【解析】解:把函数y=sin2x的图象向左平移个单位长度,得,即y=cos2x的图象,把y=cos2x的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cosx的图象;故答案为:y=cosx14【答案】 【解析】解:对于:倾斜角范围与的范围不一致,故错误;对于:(x1)sin(y2)cos=1,(0,2),可以认为是圆(x1)2+(y2)2=1的切线系,故正确;对于:存在定圆C,使得任意lL,都有直线l与圆C相交,如圆C:(x1)2+(y2)2=100,故正确;对于:任意l1L,必存在唯一l2L,使得l1l2,作图知正确;对于:任意意l1L,必存在两条l2L,使得l1l2,画图知错误故答案为:【点评】本题考查命题真假的判断,是中档题,解题时要注意直线方程、圆、三角函数、数形结合思想等知识点的合理运用15【答案】【解析】解:(1)证明:l1的斜率显然存在,设为k,其方程为y2pt2k(x2pt)将与拋物线x22py联立得,x22pkx4p2t(kt)0,解得x12pt,x22p(kt),将x22p(kt)代入x22py得y22p(kt)2,P点的坐标为(2p(kt),2p(kt)2)由于l1与l2的倾斜角互补,点Q的坐标为(2p(kt),2p(kt)2),kPQ2t,即直线PQ的斜率为2t.(2)由y得y,拋物线C在M(2pt,2pt2)处的切线斜率为k2t.其切线方程为y2pt22t(x2pt),又C的准线与y轴的交点T的坐标为(0,)2pt22t(2pt)解得t,即t的值为.16【答案】 【解析】解:=1bi,a=(1+i)(1bi)=1+b+(1b)i,解得b=1,a=2|abi|=|2i|=故答案为:【点评】本题考查了复数的运算法则、模的计算公式,考查了计算能力,属于基础题17【答案】60 【解析】解:|=,=3,cos=与的夹角为60故答案为:60【点评】本题考查平面向量数量积表示夹角和模长,本题解题的关键是整理出两个向量的数量积,再用夹角的表示式18【答案】(,0) 【解析】解:y=,斜率k=y|x=3=2,切线方程是:y3=2(x3),整理得:y=2x+9,令y=0,解得:x=,故答案为:【点评】本题考查了曲线的切线方程问题,考查导数的应用,是一道基础题三、解答题19【答案】 【解析】解:(1)函数f(x)的导数为f(x)=,由题意可得,f()=,f()=,即=,且=,由mN,则m=1,t=8;(2)设h(x)=ax+,xh()=0,即a,h(x)=a,当a时,若x,h(x)0,若x,设g(x)=a,g(x)=0,g(x)在,上递减,且g()0,则g(x)0,即h(x)0在,上恒成立由可得,a时,h(x)0,h(x)在,+)上递增,h(x)h()=0,则当a时,不等式f(x)ax+在,+)恒成立;当a时,h()0,不合题意综上可得a【点评】本题考查导数的运用:求切线方程和求单调区间,主要考查不等式恒成立问题转化为求函数最值,正确求导和分类讨论是解题的关键20【答案】 【解析】解:(1)由圆C1的参数方程为(为参数),可得普通方程:(x2)2+y2=4,即x24x+y2=0由圆C2的极坐标方程为=4sin,化为2=4sin,直角坐标方程为x2+y2=4y(2)联立,解得,或圆C1与圆C2相交,交点(0,0),(2,2)公共弦长=【点评】本题考查了参数方程化为普通方程、极坐标方程化为直角方程、两圆的位置关系、两点之间的距离公式,考查了推理能力与计算能力,属于中档题 21【答案】 【解析】解:()设水池的底面积为S1,池壁面积为S2,则有(平方米),可知,池底长方形宽为米,则()设总造价为y,则当且仅当,即x=40时取等号,所以x=40时,总造价最低为297600元答:x=40时,总造价最低为297600元22【答案】 【解析】解:(1)函数f(x)的定义域为(0,+),f(x)=k=0,x=,由ln1+1=0,可得k=1;(2)当k0时,f(x)=k0,f(x)在(0,+)上是增函数;当k0时,若x(0,)时,有f(x)0,若x(,+)时,有f(x)0,则f(x)在(0,)上是增函数,在(,+)上是减函数k0时,f(x)在(0,+)上是增函数,而f(1)=1k0,f(x)0不成立,故k0,f(x)的最大值为f(),要使f(x)0恒成立,则f()0即可,即lnk0,得k1【点评】本题考查导数的几何意义,考查函数单调区间的求法,确定实数的取值范围,渗透了分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识23【答案】 【解析】解:(1)因为不等式ax23x+64的解集为x|x1或xb,所以x1=1与x2=b是方程ax23x+2=0的两个实数根,且b1由根与系的关系得,解得,所以得(2)由于a=1且 b=2,所以不等式ax2(ac+b)x+bc0,即x2(2+c)x+2c0,即(x2)(xc)0当c2时,不等式(x2)(xc)0的解集为x|2xc;当c2时,不等式(x2)(xc)0的解集为x|cx2;当c=2时,不等式(x2)(xc)0的解集为综上所述:当c2时,不等式ax2(ac+b)x+bc0的解集为x|2xc;当c2时,不等式ax2(ac+b)x+bc0的解集为x|cx2;当c=2时,不等式ax2(ac+b)x+bc0的解集为【点评】本题考查一元二次不等式的解法,一元二次不等式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年房地产项目建筑抗震顾问服务合同范本
- 2025版外墙清洗与外墙涂料保护服务协议
- 2025版膨润土矿产资源承包合同模板
- 2025年度旅游服务管理系统购买与升级合同
- 2025年餐厅装饰装修工程品质保证合同
- 2025保定高端住宅托管出租合作协议
- 2025版施工环保责任协议模板及下载
- 2025版企业劳动合同中保密协议与竞业限制规定
- 2025年度塔吊及人货电梯施工劳务分包项目合作协议
- 2025年度智能机器人项目合同授权委托管理制度
- 河北单招考试五类职业适应性测试试题+答案
- 高中数学 人教A版 必修一 《集合与常用逻辑用语》 1.1集合的概念
- 深圳某电厂锅炉维修改造施工组织设计-new(常用版)
- GB/T 4950-2021锌合金牺牲阳极
- 中药调剂技术-课件
- 证券从业考试基础模拟卷二(题目+解析)
- 水轮发电机讲义课件
- 信息系统运维服务方案
- 化工试生产总结报告
- 导数与原函数的对称性 微专题课件-2023届高三数学一轮复习
- 刑法各论(第四版全书电子教案完整版ppt整套教学课件最全教学教程)
评论
0/150
提交评论