让数学在生活中鲜活起来让学生在放手中主动起来.doc_第1页
让数学在生活中鲜活起来让学生在放手中主动起来.doc_第2页
让数学在生活中鲜活起来让学生在放手中主动起来.doc_第3页
让数学在生活中鲜活起来让学生在放手中主动起来.doc_第4页
让数学在生活中鲜活起来让学生在放手中主动起来.doc_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

让数学在生活中鲜活起来让学生在放手中主动起来朱丽莉 当教育发展到今天,课改逐渐成了中国教育发展的核心。作为一名教育工作者,我们自然会自觉地关注并融入这场课程改革,下面我就谈一谈在全身心地学习、体验课改精神的过程中自己思想观念上的转变以及一些思考与体会。一、重识我们的目标新标准中的教学目标由原来的单一型转变为现在的保留了原有的知识、能力的目标,拓宽了情感、态度价值观方面的目标,最重要的是新增了过程性目标。标准中不仅使用了“了解、理解、掌握、灵活运用”等刻画知识、技能的目标动词,而且使用了“经历(感受)、体验(体会)、探索”等刻画数学活动水平的过程性目标动词。并且提出“要关注学生学习的结果,更要关注学生学习的过程;要关注学生学习的水平,更要关注学生学习过程中的情感和态度。帮助学生认识自我、建立信心。”因此我们的教学决不能再以“只要结果,而缩短知识的形成过程”去获取所谓的高效率。必须要让学生在数学活动中去“经历过程”。 这里我想说一说自己的一些尝试及带来的思考。绿化校园这一课是人教版教材根据标准的变化配套进行的新增内容。这是在学完了组合图形后的一堂实践活动课。课前我让学生用查资料、询问别人、估测的方法调查花坛和树阴的面积。活动开始,我先让学生有估测的意识,估测一下教室门的面积;然后询问学生:“如果让你去实地测量,你觉得可能会有那些困难?”学生纷纷发表意见,考虑得甚至比我课前设想还要多:“例如,图形不规则;会有障碍物;高怎么呀量等等?花坛内树伸到花坛外面怎么算;”问题呈现以后,我又将其抛回给学生,“你们准备怎么解决呢?”经过一段充分时间的讨论后,生答道“图形不规则,可以近似地看成规则的或划成近似规则的;有障碍物绕过去或在上空量;高则可以量出两平行线之间最短的垂线段”这样,在实际测量中可能遇到的问题就在这一来一回中被学生自己主动地解决了。难点突破后我便让学生自由组队,分析平面图,自行分工并要求先估测再实测。学生一组一组在一起分析、讨论地有模有样,在随后的实地测量也表现得配合有序,每一个人都显得很积极主动。帮助学生经历实地测量的过程是面积计算很重要的一点。如果我们把现成的图形及数据提供给学生,对学生来说,无论他的思路多么巧妙,他们也只会处理有现成数据的问题。但现实生活中很多数据和资料都不是现成的,想要调查、分析面积就必须学会解决必要的困难,去实地获得第一手资料,这样也有利于培养学生的独立性、责任心,提升他们学习动机。在课的最后,我又提出了,看到这些数据你想到了什么,你有什么建议吗?至此学生自主地实现了对数据的调查、分析并提出一些合理化建议,学生在谈到这堂课的收获时说了很多,其中说得最多的就是自己能用数学解决实际问题的成功感。二、对课堂组织的重新认识数学学习的基础首先是学生的生活经验。现代数学教学在教学设计上很重要的新理念,就是要引导学生从生活经验的客观事实出发,在研究现实问题的过程中学习、理解和发展数学,密切数学与学生生活实际的联系。教育心理学的研究表明:当学习的材料与学生已有的知识和经验相联系时,才能激发学生学习和解决数学问题的兴趣,数学才是活的、富有生命力的。因此,数学课堂教学,要紧密联系学生的生活实际,从学生的生活经验和已有知识出发,创设生动有趣的情境,引导学生开展观察、操作、猜想、推理、交流等活动,使学生通过数学活动,掌握基本的数学知识和技能,初步学会从数学的角度去观察事物、思考问题,激发学生对数学的兴趣。使学生感受到数学就在自己的身边,就存在于自己熟悉的现实世界中。在以往课堂上小手林立,师提生答,天衣无缝的课堂是一直被称道的,但现在看来,学习知识的最佳途径应该是把主动权还给学生,由学生自己去发现。因此,我加大课堂活动力度,放手让学生在活动中探究,发现、巩固,提高课堂教学效率。在教学分数的基本性质的概念时,首先我复习两点:商不变的性质 ab=( ) b0随后问:这两个内容有什么联系,你有什么联想?学生在稍作思考后答:分数也有数学性质吧。“你想假设一个有什么性质。”在学生说出自己猜想的性质(大概就是模仿商不变的性质叙述)后,我又放手让学生去验证自己的的猜想,经过一番忙碌后,有的学生用将圆对折成不同的份数的方法来证明;有的学生利用分数与除法的关系如(得到12=36)来证明;有的学生更抽象甚至用A/B=(ac)(bc)(c0)来证明,其间渗透了商不变的性质;还有的,最后,我让学生将自己猜想、验证得来的性质总结一下,自己给起个名,学生表现得异常开心。一堂课下来教师只是起了穿针引线的作用,而学生却已经将要掌握的知识牢牢地印在了脑子里。其实我们教师也经常会对学生说起“数学就在我们身边”类似的话,但要让学生真正体验到这一点,还需要我们教师课堂的组织者自主地转变观念,重组课堂,让数学能真正地走进学生。数学教学中的“活动”淮安市实验小学 殷定红 (淮安市实验小学 223001)摘要:教师挖掘教材把蕴藏在教材中那些隐含的知识点挖掘出来,组织探究活动,以培养学生的研究能力;给孩子发表“不同想法”的机会和空间;从学生的实际出发,布置一些实践性的题目,指导学生参加探究活动,把数学知识和生活实际紧密联系起来。最终在引导学生探究数学知识的同时,培养学生科学的探究精神和探究能力。关键词:挖掘教材、机会、“实践”、“讨论”数学是一门探索模式的学科,它的任务之一就是探索现实生活中的各种规律,而数学中的“活动”更能有效的完成这一任务。由于长期以来教师主宰了活动的一切,学生在活动中始终处于被动参与的状态,学生作为主体的主体地位没有得到落实,学生活动的自主性、能动性和创造性得不到充分发挥,使生机勃勃的活动的生命力牢牢限制在教师的权威下,失去了活动促发展的本体价值。因此,教师要深入挖掘教材内容,讲究教学策略,提出切实可行的新研究目标,组织学生开展一切探究活动。挖掘教材,开展活动。数学教材是专家编的供学生学习的材料,因此有一定的抽象性,书上的解法也不是唯一的,有时还可能出错。教师不能迷信教材,要认真钻研和熟悉教材,把蕴藏在教材中那些隐含的知识点挖掘出来,组织探究活动,以培养学生的研究能力。教学时要提供探究条件,引导学生探索数学结论的得出过程。如在上“三角形任意两边的和大于第三边”这堂课时可以这样安排学生展开活动。首先,教师给每个学生发三组木棒:一组可以组成三角形,一组是两根木棒的长度和等于第三根的长度,一组是两根的长度和小于第三根的长度。然后,学生摆三角形,量出三组木棒长度。最后,教师把学生量得的木棒长度分三块罗列在黑板上:一块是能够组成三角形的数据,一块是两根木棒的长度和等于第三根长度的数据,一块是两根的长度和小于第三根长度的数据。教师就此提出“请你用一个等式或不等式表示三条线段能够组成三角形的条件”的问题。这时,学生一般会在能够组成三角形的那块数据里寻找关系式。有的会用两线段的积大于第三线段,有的会用两线段的商与第三根的长度比较,有的甚至会用两线段的平方和与第三根木棒长度的平方比较等较复杂的形式。不管学生用哪种方式,教师都板书到黑板上,然后引导一一筛选,或者举例否定,最后只剩下所要得到的结论。经过教师对教材知识的挖掘,并精心设计探究活动,激发了学生学习数学的积极性,增加了学生探索问题、研究问题的能力。给孩子机会,更好发挥活动作用。在教学中给孩子发表“不同想法”的机会和空间是非常必要的。教师要重视学生的第一次“不同想法”,也许还会有第二次、第三次只要养成了这个习惯,有了这种探索精神,学生遇到问题总会从不同角度去思考、去探索、去创新。一次在教两步计算应用题时,有这样一道题“果店里有梨15筐,苹果的筐数是梨的3倍,苹果比梨多多少筐?”大多数学生都从问题入手,用“苹果的筐数梨的筐数=多多少筐”,先算苹果有多少筐,然后利用关系式算出了此题。大家解决了问题,都很开心。可谁知道,王“节外生枝”:“老师,这题用152也能做。”我笑了笑,给了她一个鼓励的眼神,她边说边用两只手比划着:“把梨的筐数用一个线段表示,苹果的筐数是梨的3倍,就用这样的3段表示,苹果比梨多的就是2段,一段是15筐,所以我用152计算。”大家的脸上露出了赞许的目光。我为她的表现而感到自豪。受到她的启发,我将题中的问题改成“苹果和梨一共有多少筐?”鼓励同学们用不同的方法解答。这时,大多数学生的思路异常活跃,都纷纷举起了手。没有王“节外生枝”,哪来全班的“硕果累累”。正是她的“不同想法”点燃了其他孩子的智慧火花。数学活动要有“实践”。数学来源于生活,又应用于生活生产实际。因此,教学时,从学生的实际出发,布置一些实践性的题目,指导学生参加探究活动,把数学知识和生活实际紧密联系起来。教学前,引导学生观察某种现象,调查某些项目;教学后,指导学生实际测量、制作等,对于学生的创造素质的培养有很大帮助。如学习统计初步知识前,组织学生调查市场的价格信息或了解家庭成员的年龄状况等,上课时就能把这些信息、数据制成统计图表。学习比例后,再带领学生来到学校旗杆旁学校的旗杆究竟有多高。实际观察后的学生提出了多种不同的方法:有学生提出爬上去量,有同学提出量旗杆的绳子,又有同学提出去量旗杆旁边楼房的高度,还有同学提出用影长与竿长的比例关系去测量和计算。然后筛选几种较为合理的方法,分组测量、计算,最后汇总,交流讨论。通过这样的探究活动,让学生看到生活处处有数学,数学就在我身边,逐步培养他们把数学作为观察周围事物、分析和研究各种具体现象的工具的意识,培养他们解决简单实际问题的能力。有了实践,才能获得素材,才能有所体会,才能在实践中得到培养,得到锻炼。若仅有实践,看了就看了,调查了就调查了,学生所获不丰,所以还得安排交流小结与反思升华。有了这一环节,学生实践后的体会与感悟才能升华,获得的思想与方法才能提升。“讨论”是活动的“灵魂”。在数学活动中,若能合理地设计好讨论,有利于充分调动学生参与学习的积极性与主动性。因此,讨论是学生自主探究的重要组织形式,是学生自主学习,获取信息,掌握知识的有效手段之一。讨论应有的放矢,教师应考虑到学生原有的认知水平,要为讨论提供材料,设计好问题,使学生的思维有方向,有目标,有的知识难度较大,学生常受年龄特征、心理特点、生活实际、认知水平的影响,思维障碍较大,需要教师提供必要的提示,为学生的思考、讨论扫清障碍。学生积极主动的参与讨论意识。讨论的正常开展,需要每一位学生善于动脑,勤于思考,自觉愉快的参与讨论。教师在教学中应注意培养学生学习数学的兴趣,树立学习的自信心,创造成功的机会,感受成功的体验,激励、表扬讨论中畅所欲言的学生,以此来激发学生求知的欲望,培养学生积极主动的参与讨论意识。著名的数学家波利亚认为:“学习任何知识的最佳途径,都是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中内在规律、性质和联系。”实践证明,恰当地运用讨论是学生积极、主动探究、获取新知的有效途径;讨论,让学生学会了探究新知的方法,尝到了成功的喜悦,激发了进一步学习数学的兴趣,培养了群体合作的学习精神。总之,数学中的活动是指以在数学教学过程中建构具有教育性、创造性、实践性的学生主体活动,以激励学生主动参与、主动实践、主动思考、主动探索、主动创造为基本特征,以促进学生整体素质全面发展为目的的一种新型的教学观和教学形式。从以灌输、讲授为主的教学形式转变为以活动为主的教学形式,这不仅仅是教学的组织形式的改变问题,更涉及到教育观念深层次的变革。新时代的教师应该是一个组织者、引导者、鼓励者,我们的主要任务是创设情境,挑起矛盾,营造良好的氛围,促使学生积极开展探究活动。在学生研讨时起到穿针引线的作用,使问题的研究不断深入,层层推进,直至达到研究目标。参考文献:中小学数学小学版2003年第9期 中小学数学小学版2004年第3期 双向互动 数学与生活淮安市实验小学李志强22300205173934140内容摘要:数学知识来源于实践,又服务于实践,它与实际生活联系十分密切。此,教师要充分利用学生已有的生活经验,从生活实际中引出数学问题,让学生体会到数学就在身边,感受到数学的趣味和价值,体验到数学的魅力。本文从生活经验数学化、把数学问题生活化两方面讨论数学与生活的双向互动。关键词:生活 数学 思维原形数学教学的成功与否在很大程度上表现在是否培养了学生的数学能力,而数学能力的强弱在很大程度上又表现在学生能否运用所学知识去解决实际问题。因此,在数学教学中,如何使学生“领悟”出数学知识源于生活,又服务于生活,能用数学眼光去观察生活实际,培养解决实际问题的能力,应成为每位数学教师重视的问题。下面就谈谈这方面的体会。一、把生活经验数学化1.运用生活经验解决问题小学生已经具备了一定的生活经验,同时他们对周围的各种事物现象又充满着好奇。老师就要紧紧抓住这份好奇心,结合教材的教学内容,创设情景、设疑引思,用学生熟悉的生活经验作为实例,引导学生利用已有的经验探索新知识,掌握新的本领。例如在学习“带分数”这部分知识时,当讲到把假分数 化为2 时,学生甲问到:我认为把 改为1 ,不也挺好吗?其他同学也疑惑的看着老师。我不动生色,看了看手表,说:“这个问题比较复杂,我们还是抓紧时间往下学吧,现在已经是8点70分了。”同学们听后大笑起来。我故作惊讶,又看了看手表:“没错呀,是8点70分了。”同学们笑得更厉害了,我随即在黑板上写出1, 又在下面画了两条线,不作声。只见同学们脸上的笑容慢慢的消失了,教室里一片寂静,又过了一会儿,甲和其他同学一样,开始慢慢地点了点头,渐渐地,笑容又回到了他们的脸上。此时,教师顺势指出把带分数写成整数和真分数的和形式比较合理。这是教师适时运用教学中的空白艺术,欲擒故纵,巧设情景,借用反常的生活现象,让学生思辨、类比,从反面迂回,悟出不合理因素。让学生在笑声中发现,静中思索,微笑中领悟。2.抓住思维原型,暴露思维本质结合教学内容尽可能的创设一些生动、有趣、贴近生活的例子,把生活中的数学原型展现在课堂中,使学生眼中的数学不再是简单的数学,而是富有情感,贴近生活,具有活力的东西。例如,教学“三角形的认识”时 一般教师采用的是就认识而认识的方法,但教师如果能从生活实际出发,出示一块被打碎成两部分的三角形窗玻璃,问:如果要照原样配一块,要不要把两块都带去?则可引起学生的兴趣,激发学生学习的原动力。在原动力的推动下,学生便能积极讨论,有的判断带去第一部分,有的判断带去第二部分;有的则说两块都带去。这时老师引导:其实只需带一块去就行了。那么,是带第一部分还是带第二部分去?还是随便带哪一块都行呢?这样设问,教师有的放矢,可充分发挥主导和主体作用,学生有的会说带第二部分去,有的会说带第一部分去,有的会说带较大的一块去,带小的不行等。他们的这些判断完全是一种直觉,这时的关键在于教师如何引导学生学会反思。教师作图,启发:跟据第一部分能恢复到原三角形玻璃形状和大小吗?直观上,学生看出带第一部分去不行。教师继续设问:带第二部分去行不行?学生已学会仿照老师的做法,通过作图了判断,从而得出结论:根据第二部可以恢复到原三角形玻璃的形状和大小,所以应该带第二部分去 。学生通过作图对自己的判断加以证实、但对自身行动后面潜藏的实质还不了解,因此老师应进一步引导。让学生观察一个三角形,明确一个三角形有六个要素:三条边和三个内角。然后设问:若带第一部分去 ,带去了三角形的几个要素?若带第二部分去 ,带去了三角形的几个要素?学生在进一步的判断中了解了问题的本质,加深了对三角形的六要素的认识,同时又为进入中学学习全等三角形判定的意义和目的打下了良好的基础。此例正是围绕着一连串的直觉思维,反思、表达、判断,不断地将数学化过程推向前进,而这也正是数学教育所追求的。身为数学教师 ,不能就小学数学而教学,自己应对数学理论,对数学知识的前后联系要心中有序,只有这样教学方能高层建瓴,学生的数学思维才能得到有效的训练。3.把生活材料组织数学化教材的设计注意让学生在现实生活中,在实践活动中学习数学丰富数学知识、数学问题的现实背景。弗赖登塔尔所提出的数学教学原则中有一条是“数学现实原则”,他认为每个人都有自己的生活、工作和思考着的特定客观世界以及反映这个世界的各种数学观念;它的运算方法和有关的数学知识结构,这就是所谓“数学现实”。数学教学就事将学生具有的“数学现实”作为直接出发点;根据学生的思维发展水平。二、把数学问题生活化1.联系实际,把数学的内容生活化数学来源于生活又应用于生活。我们应紧紧 抓住学生的最近发展区,从实际生活的例子引入,这样既符合学生的认识规律,又能使学生从中体会到运用知识解决实际问题的成功的喜悦,从而把学习数学当作一项生活的本领和工具,才能充分发挥学生的主体性和积极性。例如:在教学按比分配应用题的时候,我就从学校平均分配保洁区任务入手,让学生谈谈对这一项任务分配的看法,来揭示平均分配的不合理性;再通过大家讨论出主意、想办法,最后找出合理的分配方法-按比分配的方法。学生体会到运用数学知识解决问题的公平、合理性,从而培养了学生的实践意识。2.精心设计,把枯燥的练习生活化练习是巩固知识、形成技能的必要方法和手段。但往往学生厌倦做练习,因而就失去了兴趣。为了更好的调动学生的积极性,就需要教时精心设计,把枯燥的练习生活化,赋予它新的生命力。例如刚学完小数加、减法,老师设计了这样一个练习:小刚和他的哥哥星期天在家打扫卫生,小刚家的房高2.7米,小刚的哥哥身高是1.73米,小刚又搬来一张桌子高0.8米,问:小刚的哥哥能擦到吸顶灯么?为什么?这是一道生活实践题,既需要用到小数加、减法,又需要联系生活实际考虑到手臂的长度,同学们各抒己见,争论起来,最后问题明朗化:2.7-(1.73+0.8)=2.7-2.53=0.17(米),而手臂长肯定大于0.17米,所以小刚的哥哥能擦到吸顶灯。学生运用数学知识解决了实际问题,使原本枯燥乏味的练习题生动、活泼起来,富有情趣,学生们爱学也乐学。长期下来,学生便会形成主动发展的机制。3.沟通联系,把教学难点生活化在教学“循环小数”一课时,先让学生观看一段春夏秋冬自然风光的录像。自然美引发了学生的兴趣,又从四个季节更换、周而复始,获得了对“循环”含义的初步理解。接着,老师启发说:“像这样的事例,你们还能举出一些么?”有的学生说:“每天早上太阳从东方升起,晚上从西边落下;第二天又从东边升起,无穷无尽。”有的学生说:“每个星期从星期一、二、三,到星期日,过了星期日又是星期一、二、三,周而复始,无穷无尽。”老师接着说:“那么,数学中有没有循环现象呢?请试算:(1)13(2)4.222”在计算和讨论中,学生掌握了循环小数的含义。学习“循环小数”这一概念,关键是理解什么是“循环”,让学生联系自然界中的循环现象,为“循环小数”的概念奠定了基础。4.借用生活经验,把数学知识生活化几乎每一个数学问题都能在生活中找到它的原型,我们就不妨多设计一些开放式地实践活动课,使学生从“寻找身边的数学”活动中真正体会到数学的用途,从而激发学生的兴趣,使学生爱学、会学。例如学生在课上发现了减法的运算性质(一个数减去两个数的和,可以从这个数里依次减去这两个数)后,自然的就联想到生活中也有类似的现象。没等老师问就急不可待地说:“我们家买炒菜的肉,总是一回买一大块,分几次吃。有时候把一整块先放在冰箱里,吃一次,切一块,下次再吃再切,就象从一个数里一次减去几个数;有的时候,先把一整块肉分切成许多小块冻在冰箱里,吃的时候是从这些小块里取,等这些小块都吃完了,这块肉也就没有了。这就象丛一个数里减去几个数的和,最后都是把这块肉吃没了,结果都是一样的,就象减法的性质一样。”多么生动的例子阿,在此过程中,数学与生活之间的桥梁被架起来了,同学们听后也纷纷用生活中自己熟悉的例子加以解释和验证,学生在轻松愉快的学习气氛中学会了数学知识,这些被证明了的知识是绝不容易忘记的。总之,在小学数学教育中,要走生活化道路是个长期而艰巨的任务,我们在数学教学中必须千方百计地让学生在生活实际的情境中体验数学问题,让学生自觉地把数学知识运用到各种具体的生活情境中,把培养学生的应用意识有意识地贯穿于教学的始终,使学生的数学素养得到真正的提高。长此以往,我相信学生一定能掌握学习科学文化知识的思想和方法,独立地进行探索。这样培养出来的学生怎么会不具备创新意识和实践能力呢?参考书目:1、施良方等主编:教学理论:课堂教学的原理、策略与研究,华东师大出版社,1999年8月版2、梁镜清主编:小学数学教育学,浙江教育出版社,1997年版4、胡重光编著:小学数学解题训练艺术,中国林业出版社,2000年版培养观察能力,激发学习兴趣 淮安市实验小学 苏静从教学心理学角度上讲,兴趣是学习成功的秘诀、是获取知识的开端、是求知欲望的基础。在数学教学中激发学生学习兴趣是推进学生学习的重要环节。如果抓住了学生的这些心理特征,对教学将有一个巨大的推动作用。兴趣的激发有利于发现事物的新线索,并进行探索创造。兴趣是学习的最佳营养剂和催化剂,学生对学习有兴趣时,思维活动是最积极最有效的,这时学习就能取得事半功倍的效果。在数学课上,培养学生学习数学兴趣的途径是多种多样的,除了和谐、融洽的师生关系外,更重要是选择适当的教学方法,做为数学老师应努力使学生热爱数学,对数学有兴趣,这样才能更好的学习数学。因为兴趣是学习成功的秘决。教师要在充分发挥主导作用的前提下,培养学生的激发学生学习兴趣。 观察能力是认识事物,增长知识的重要能力,是构成智力的重要因素。在小学数学教学中,必须引导学生掌握基本的观察方法,学会在观察时透过事物的表象,抓住本质、发现规律,达到不断获取新知、培养能力和发展智力的目的。在教学中如遇到一些抽象的内容,要尽量引导学生自己去观察、分析、综合,自己总结规律,从而激发学生学习知识的兴趣,使学生在轻松愉快的环境中能够化繁为简,化难为易地掌握所学的知识,而不至于在深奥的数学迷宫中走迷失方向。例如:在教学乘数是一位数的乘法计算法则时,要求列竖式计算123,然后要求学生人人动手把123改动一个数字并且计算出结果。有人改成173、423、128等等,五花八门,学生的积极性很高,很有兴趣。再指点学生仔细观察,并与123比较不同,学生很快发现123的乘积是不进位的,变动以后的题有许多是进位的。再引导学生观察辨析乘法里的进位与加法里的进位有什么不同。显见,加法的进位是向高一位进1,而乘法的进位有的进1,有的进2或3、4、5、6、7、8,在此基础上概括出计算法则。学生通过自己的观察、分析,非常积极准确的概括总结出结果,这时他们对于法则中“哪一位满几十向前一位进几”这句话就完全理解了。学生是学习的主人,是教学活动的参与者,在教学中,要诱发学生仔细观察己学习过的公式、法则、与新的问题之间的关联性,利用旧概念去认识新概念,利用旧公式去解决新问题。例如:在教材第二册32页例8:学校养了7只黑兔,12只白兔,白兔比黑兔多几只?指导学生读题:(1)请学生说出题目的条件和问题。学生边说,老师边出示12只白兔和7只黑兔图;(2)提问:白兔比黑兔多几只是什么意思?(白兔和黑兔同样多的数目以外还有几只);(3)老师演示,把白兔和黑兔一只一只的对着,中间有虚线连起来(引导学生观察,白兔和黑兔对着有7只,是同样多的部分,还有5只没有对着,这5只是白兔比黑兔多的只数。)(4)看图说一说:求白兔比黑图兔多几只,应该怎么办?(从白兔里去掉黑兔同样多的数目,剩下的就是白兔比黑兔多的只数);(5)怎样求白兔比黑兔多几只?用什么样的方法计算?(列式板书12-7=5(只)答:白兔比黑兔多5只。)(6)小节提问(a)从白兔里面去掉与黑兔同样多的只数后剩下是什么?(b)求白兔比黑兔多几只就是求什么:?(求一个数比另一个数多几只)(c)想:求一个数比另一个数多几,用什么方法计算?这样学生由直观感知上升到抽象的理解,有了这个基础进行求一个数比另一个数多(少)多少的教学就顺利了,这样做充分体现了直观教学的优越性。我认为人们对知识的认识和积累,都是通过观察实践而得到的,没有观察也就没有丰富的想象,也不可能有正确的推理、概括和创造性,所以有意识地安排学生去观察、去思考,逐步培养学生的观察能力,发展学生的想象力,既增加了数学的趣味性,又创造了良好的课堂气氛。而知识、智力、兴趣关系密切,小学生的行为在很大程度上是受他们的情感来支配的。因此,老师要教给学生好的学习方法,持之以恒地结合知识进行学习方法的指引和训练,使他们运用正确的学习方法,顺利掌握知识,增添学习兴趣,体验成功的乐趣。学会猜想江苏省淮安市实验小学 王超摘要:数学课程标准强调:让学生经历观察、实验、猜想、证明等数学活动过程。依据已有的材料知识对象或问题进行观察、实验、分析、比较、联想、类比、归纳等,作出符合一定的经验与事实的猜想。让课堂充满探索,充满快乐的思考、感悟的喜悦、彰显个性的多元化评价,营造出一份和谐而愉悦的课堂学习氛围。数学猜想实际上是一种数学想象,是人的思维在探索数学规律、本质时的一种策略。它是建立在已有的事实经验基础上,运用非逻辑手段而得到的一种假定,是一种合理推理。笔者拟从猜想的平台、猜想的意识、猜想的实现等方面谈一点个人的感受。关键词:猜想 平台 意识 实现数学方法理论的倡导者G波利亚曾说过,在数学领域中,猜想是合理的,是值得尊重的,是负责任的态度。数学猜想能缩短解决问题的时间;能获得数学发现的机会;能锻炼数学思维。没有做不到,只有想不到。科学来源于大胆的猜想,从小培养学生的敢于猜想、善于猜想的能力,对学生今后的发展有着很需要的意义。营造良好的猜想氛围。教师要鼓励学生积极思考,不迷信已有结论,不满足现成解答,大胆猜想。教师应随时点燃学生猜想的导火线,甚至教师本身直接成为学生猜想的导火线。对猜想合理的进行鼓励,对猜想偏向的进行引导,对不猜想的进行鞭策,使学生的被动的猜想行为转变成自觉的猜想行为,师生共同构建数学猜想共同体。猜想是构建数学认知结构时,主体思辨活动的关键一步,猜想能促进知识的同化和顺应的进行,加速知识的发生和迁移,猜想既有一定的科学性,又有一定的假定性,这一层面上又反映出猜想思维的敏捷性、灵活性以及批判性。正如拉卡托斯指出:朴素的猜想构成了数学现的逻辑实际出发点。从某种意义上可以断言,没有猜想就没有数学。创设良好的猜想平台 现代认知理论认为,学习是主体主动的意义建构活动,是主体在头脑里建立和发展数学认知结构的过程,是数学活动及其经验内化的过程。因此,猜想是在建构活动中,主体的数学认知结构对当前面临的新知识、新问题进行的预测性的重组、整合的过程,它使外部知识与内部创造的不平衡达到暂时的平衡,可以在各个教学环节中给学生猜想的机会 。1在引入中“猜想”在众多引入新课的方法中,“猜想引入”以它独有的魅力,能很快地扣住学生的心弦,使其情绪高涨,思维活跃,产生良好的学习动机,从而步入学习的最佳境地。如在“圆面积的计算”教学中,先让学生猜一猜圆面积大约在什么范围呢?如图所示,边观察,边猜想。 提问:这个小正方形的面积是多少?(r)这个大正方形的面积是多少?(4r)猜一猜圆面积大约在什么范围呢?(圆面积4r)教师问:比4r小一点,那到底是多少呢?大家知道吗?现在我们就来探讨解决这个问题。这样通过猜想,使学生初步勾勒出知识的轮廓,从整体上了解所学的内容,启动了学生思维的闸门,使其思维处于亢奋状态。 2.在新知探索中“猜想” 在学生学习数学知识过程中,加入“猜想”这一催化剂,可以促进学生多角度思维,加快大脑中表象形成的速度,从而抓住事物的本质特征,得出结论。如在圆的周长教学中,教师让学生拿出事先准备好的学具:若干个大小不一的圆、一根绳子、一把米尺、一个圆规。问“要研究圆的周长,你想提出什么样的方法?”学生经过观察、思索、动手操作,提出猜想:“用绳子量出圆的周长,再量绳子长度行吗?”“把圆直接放在直尺上滚动,量出圆的周长行吗?”“对于这个圆,用绳子量出它的两个直径的长度,试一试能否还围成这个圆。不行,再量出三、四个直径的长度,看可不可以围成这个圆。猜想:圆的周长是不是三、四个直径的长度?”显然这是一个很了不起的猜想。教师追问:“为什么你要提出这样的猜想?”学生回答:“用圆规画圆,半径越长,圆就越大,也就是直径越长,圆的周长就越长,所以,用直径求圆的周长,既准确,又省力。”由此可见,通过学生一系列的自主猜想,诱发了跳跃思维,加快了知识形成的进程。 3在练习巩固中“猜想” 充分发挥学生的潜在能力是当今素质教育研究的重点。因此,教师要采取多种手段激活学生学习的内驱力,疏通学生潜能涌动的通道,以求迸发出智慧的火花。要想实现这一目标,教师可以充分利用猜想,在有利于发挥学生的潜能的最佳环节之一 知识巩固阶段,调动学生头脑中已有的数学信息(概念、性质),并对之进行移动和重组,开拓新思路,从而获得突破性的结论。如我经常设计一些活泼的情境题、开放题,引导学生猜想,有这样一道题:“学校围墙外面是大片草地,一只羊拴在桩上,绳净长5米,这只羊可在多大面积吃到草?”学生们动手寻找答案,很快学生提出猜想:“要求这只羊可在多大面积吃到草,就是求以绳长5米为半径的圆的面积。过了一会儿,又有一位学生提出的猜想更为新颖别致、别出心裁。他说:“羊吃草有无数种情况。”并画出了一组图形: 这种由图形表达的结论充分展示了学生无法估量的创造潜能。对他猜想的构思、生成过程及其所经历的体验也只可意会,无法言传。体现了“没有大胆的猜想,就没有伟大的发现。”(牛顿语)形成良好的猜想意识 人们认识事物是一个复杂的过程,开始是根据已有的部分事实及结果,运用某种判断推理的思维方法,对某类事实和规律提出一种推测性的看法,这种推测性的看法就是猜想。猜想是数学发展的动力。数学猜想不但促进了数学理论的发展,而且也促进了数学方法论的研究。例如学习“简单的统计-选歌曲”一课题,(为了迎接“六一”学校举行大合唱比赛,以班级为单位参赛,)要根据统计图上的数据让学生提出不同的问题当一位同学联想到:“根据其中一组的统计情况,可以推想或猜算全班同学最喜欢唱的歌曲统计情况。”课堂上一场别开生面的小争论就开始了,有的提出不同的看法,认为其他组成员喜唱的歌曲不一定与这组一样,不能根据这组的统计情况猜想估算。两种不同想法的同学根据自己的见解争议着。形成良好的实现猜想的能力猜想虽然是依据一定的科学知识,进行合理地想像、推理,但它毕竟只是猜想,还没有经过验证,说服力还不够,猜想和胡思乱想不同,和真理有着本质的不同,而且由于猜想的思维踊跃性太强,有些只能说是突发奇想,最终必需要经过严密地验证,培养学生验证猜想地能力,是对猜想能力地肯定,也培养了学生的科学的认识观。如学生学习了正方形、长方形、平行四边形、三角形、梯形面积计算方法后,让学生去研究这样一道题,由两个正方形组成的如图所示的图形,只知小正方形的边长为6,求阴影部分三角形的面积。开始学生会觉得很简单,因为它与知道两个正方形边长的题目很相似,再仔细一看,发觉缺少一个条件,即缺少大正方形边长,于是陷入一种困惑。 这时,不妨让学生试一试凭直觉你觉得面积应是几?很多人会猜是18。那么为什么呢?不妨再让学生去假设大正方形边长为已知条件,长度可以随意定,让学生去计算阴影部分面积,于是大家发现结果惊人的一致,都是18。这又是为什么呢?学生可以肯定阴影部分面积与小正方形有密切关系 ,而与大正方形没有多大的关系。此时让学生去观察三角形AEF与梯形CBEF的大小,有没有办法证明是一样大。再观察三角形AHB与三角形CHF的大小关系,会发现这里有一个等量替换的关系而恍然大悟。学生的猜想从中得到了验证、实现,易于增强学生猜想的自信,培养学生验证猜想的意识,也对学生科学的认识观的形成起到了非常积极地作用。 牛顿在树下被苹果砸了一下,经过猜想、研究得出万有引力定律,正因为哥德巴赫猜想、费尔马猜想等猜想的提出,数学科学才发展为今天壮观的现代数学。因此,应教会学生怎样猜想,形成良好的猜想意识,如引导他们怎样整合材料、提出疑问,又如何猜想结果或问题解决的途径。猜想的实现途径,可能是探索试验、类比、归纳、构造、联想、审美以及它们之间的组合等,数学猜想是有一定规律的,如类比的规律、归纳的规律等,并且要以数学知识和经验为支柱,让学生学会在猜想中起飞。参考资料:多元智能加德纳心理学人民教育出版社走进新课程-与课程实施者对话北京师范大学出版社联系方式:淮安市实验小学 王超邮编:223001直面“学生插嘴” 新课程标准下对课堂现象的一点思考 王 超 新课程改革实验以来,许多老师在课堂教学中都会遇到“学生插嘴”的现象。具体表现为:学生插老师的嘴,当教师在讲解、引导或统一要求时,学生突然给你一句意想不到的话;学生插同学的嘴,当同学在表述自己的想法时,有的学生会无意识地把自己的想法说出来,倒致不少学生听不进、听不清其它同学的发言;还有一些学生的自言自语。这些现象给老师们多少担心、多少困惑、多少欣喜与多少思考啊!分析:一、新课程标准下的教学情境传统教学的“问答式”、“说听式”教学,教师是课堂的主宰者,课堂成为教师的“一言堂”;学生不敢越雷池半步,只有先举手再发言、只有经过老师的同意才可以发言,课堂上一般不会出现 “学生插嘴”的现象。然而,新课程倡导平等、民主、和谐的师生关系,倡导教师是学生学习的促进者、合作者、研究者,在这种宽松、融洽的课堂教学氛围中, “学生插嘴”现象的产生是合情合理的、无可非议的,它不是“乱”、而是“活”,它是新课程条件下的教学景观。二、学生插嘴个性不礼貌“让每一位学生得到发展”是新课程的核心理念。它要求教师要特别关注学生的个性,关注学生个性的差异,让每一位学生都有机会张扬自己的个性,展示自己的智慧与才华。 “学生插嘴”是学生自我实现个性张扬的最佳途径,因为学生是在一种没有约束、没有负担的的教学情景中产生的“插嘴”,这种个性的张扬是真实的、积极的、有意义的,它是学生的直觉、顿悟和灵感而迸发出来的创新性思维。学生的插嘴是为了证明一种观点、一种主张,是为了展示自己,体现出一种积极进取的精神,这同一般意义上的好讲话、讲废话有着本质的不同,学生正是因为真正地参与到课堂中来,才有话要讲,有言要发、不发不快,同时也体现了学生不唯同学、不唯师、不唯书本的探索精神,让学生敢于说“不”,有自己的想法,敢于创新,不正是我们的教育所追求的精神吗?三、教师魅力的体现 新课程特别强调要关注教师的成长,使课堂成为教师展示教学才华的平台。“学生插嘴”现象的产生将考验教师的教学理念、调控水平、应变能力以及引导学生解决问题的方法,如:当学生的“插嘴”不尽人意时,你怎样让学生愉悦地坐下来;当学生的“插嘴”富有挑战时,你如何盘活、如何进行教学的“二度设计”,当学生的“插嘴”总是插不到要点,老师如何“点睛”,使之成为课堂的亮点,成为学习的资源,成为学生探究知识、发现规律的新的起点。学生的插嘴多了,课堂活了,对教师驾驭课堂的能力要求更高了,更能体现出教师的出众魅力! 思考:一、等待等待非常重要,学会做延迟判断,让学生自己来判断,而不是老师作为一个法官来判断,这是我们在课堂上要经常使用的一种策略。不要把自己知道的答案马上急于告诉学生,没有必要的。面对学生的“插嘴”,等待可以给学生一个自由想象的时空,一个表达的机会,能真正地把课堂还给学生,让学生敢想、敢说、敢做,焕发出生命的活力。例如:教学8-2+4时,一年级的学生大部分会这样想:先想8-2=6,再想6+4=10;可是,有学生这样”插嘴”了:“老师,我还有不同的想法,2和4可以调换一下位置“。此时,教师唯有等待,让这个学生继续往下说:“8-4=4,4+2=6”,这时教室热闹起来了,有的说:“不对、不对,”有的说:“应该是8+4=12,12-2=10”,面对这些学生,给他们留有思考的时空,他们就会去判断、去发现、去创新。二、喝彩数学课程标准在“情感与态度”中强调:学生应在他人的鼓励与帮助下,能克服在数学活动中遇到的某些困难,获得成功的体验,有学好数学的信心。面对学生的“插嘴”,我们不仅要认真倾听、耐心等待,而且要经常为学生喝彩;这是因为:喝彩,能满足学生的情感需要,产生积极的、主动的、冲击式的学习欲望。例如:给学生讲小松鼠背土豆的故事,当讲到“袋子破了,咕咚一声”时,学生又情不自禁地“插嘴”:“土豆掉了,小松鼠又把它拣回来了”;此时,我不是等待,而是喝彩:“你说的好啊!老师为你高兴!下面我们围绕掉和拣来提出一些数学问题,好吗?”学生在老师的鼓励、挑逗下,大胆想象、大胆猜测,提出了许多有价值的数学问题。并在小组合作学习中积极探索、发现与解决。三、引水入渠由于学生的年龄特点,易激动,所以在课堂上很多情况下是一种本能的合群、参与,这种热情具有短暂性、不稳定性,所以教师要加以引导,使之持续的时间能更长些;对于学生插嘴的方向性,教师也可在长期的训练中,有意识地加以培养,引导,使之更准确,更易答中要点。此外,还应让学生明白尊重他人的重要性,尊重他人等于尊重自己,学会听别人发言,听明白别人的发言也是一种能力等等,使学生“插嘴”这一滴浪花能入渠归海。营造评价氛围 促进学生独立思考 江苏省淮安市实验小学 漆猛亭 以往的教学观念认为,拿到满分的学生就是优等生,这只是对学生片面、狭窄的评价。根据新课改理念,我们更应该注重对学生的情感、体验、能力等方面的综合评价。对学生的评价就是要让学生在不同程度上看到自己在参与学习后取得的进步和成绩,享受成功的快乐,从而激发学生学习的兴趣,培养勇于探索,勇于创新的精神。“教学的艺术不在于传授的本领,而在于激励、呼唤、鼓舞。”这是大教育家第斯多惠提出的。因此,我们要启动新的评价体制。 学生发展的过程是在他们参与数学活动、认识新知,并在积极地、富有创造性地独立思考的过程中实现的。教师要让学生在具体的操作活动中进行独立思考,鼓励学生发表自己的意见,并与同伴进行交流。通过对学生独立思考的过程的评价,可以使学生形成良好的思维习惯和思维能力,促进学生的发展。而这不能只通过分数来评价,而应该通过开放性、激励性的评价,激活学生的思维,放飞学生的思维,让课堂充满生机和活力,充分调动学生的积极性与参与性。 一、在互评中激活学生的思维 据一项研究资料表明,小学生进入小学时,对新鲜的事物怀有追根究底的习惯,总喜欢问为什么。然而,一旦读了几年书,有百分之六十以上的学生失去了问问题的兴趣,学生的思维被封锁,谈何探索?谈何创新?因此,只有激活学生的思维,才能促进学生的发展。 在教学中,我经常鼓励学生互相进行评价。记得在教学人民币的认识时,有这样一道题“小青买了一个笔盒和一本画册共要8元6角,他应该怎样找钱?”学生马上进行热烈的讨论。有的说“我拿8张1元和6张1角”,有的说“我拿8张1元和1张5角1张1角”,也有的说“我拿1张5元、1张2元、1张1元、1张5角、1张1角”顿时,教室里象炸开的锅。这时,我说:“你们觉得这些方法怎样啊?”“第一位同学说的跟我想的一样,我觉得这样拿容易记。”“我觉得第三位同学说的好,这样比较少张,容易拿。”看到学生踊跃的发言,我满意的点头,说:“还有更好的方法吗?”这时,吴羽站起来说:“我认为拿1张10元去买,找回1张1元和2张2角,这样比较简便。”正当我为同学思维的敏捷而高兴的时候,全班已响起了一片热烈掌声。我说:“说说你们为什么鼓掌吧?”“我认为吴羽的方法很妙,非常方便。”“我昨天买水彩笔就是用这种方法的,我刚才怎么没想到呢,吴羽真棒,所以我为他鼓掌。”受到大家的赞同,吴羽开心的说:“谢谢大家!” 课进行到这里,我真的很高兴。其实课堂上的数学知识就是我们日常生活中经常遇到的问题,一旦缩小了课本与生活的距离,学生的心里有底了,自信心也就有了。当然伙伴的肯定更是激发了他们探索的欲望,点燃了他们智慧的火花。教师要主动为学生提供交流的机会,使学生在相互交流中不断完善自己的方法。这样不仅可以帮助教师了解不同学生的学习特点,而且有助于促进学生个性发展。通过实践证明,学生们在评价别人的同时,自己也会加深认识,甚至是对问题的理解上升一个层次,从而提高学生的比较和分析能力。同时,学生的思维能力和语言表达能力也得到了提高。而且,学生在互相评价时往往是站在同一个高度来看问题,这样更直接,也更容易被学生所接受。 二、在自评中放飞学生的思维 数学课的意义不仅仅局限于教给学生某种数学知识,更重要的是在研究现实问题的过程中认识丰富的数学世界。在这一过程,学生的自评起着画龙点睛的作用。自评是一种自我肯定。在课改的大环境下,新的教材和教学模式的启动,学生被动的角色转变为主动,以学生为本是我们的教学理念,学生和教师抛弃了旧的课堂模式,没有了方方框框的束缚,自主、开放的课堂使学生敢想、敢说,这为发展学生的思维提供了一片沃土。学生通过自评,发挥了学生的主体作用,使学生懂得好和坏是自己表现出来的,而非老师和同学说的;通过自评,学生有了追求成功和进步的渴望,能充分调动学生的积极性。 例如在教学这道思考题“第一个篮子有15个梨子,第二个篮子有7个梨子,要使两个篮子的梨子同样多,怎么办?”学生很快想到从第一个篮子里拿出4个梨子放到第二个篮子里,除此之外就想不到其他方法了。于是我提示学生,只变化一个篮子,也能使它们同样多,怎么办?学生终于想出了其他方法,从第一个篮子拿出8个,或者在第二个篮子里再加8个。学生自己研究出知识,分外高兴,并且很有成功感。这时,我要求学生自己评一评自己,有的学生说:原来思考题也不是很难,只要我开动脑筋,就能解决。也有的说:原来我也能想出很多方法来解决这道题,我要加油看到学生兴奋的样子,我趁热打铁,提出了新的要求,用这道题回家考家长,并把你的感受写下来。有的学生写到:我有机会当老师了,这种感觉真好。也有的学生写到:我妈妈不愧是老师,立刻就说出了答案。更有的学生写到:妈妈只想到一种答案,看起来大人也不是什么都会的呀!在这一种气氛中,学生的思维得到扩张,不再局限于课堂了。我们为看到学生丰富多采的想法而欣慰,我们也为学生的自信而喝彩! 在教学中,教师应提供一些富有挑战性和探索性的问题,激活学生的思维,放飞学生的思维。而适时的自评,能提高学生的自信心,也能使学生看到自己的不足,在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论