已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
用向量法求空间角,立体几何中的向量方法,所以,异面直线a、b所成的角的余弦值为,用向量法求异面直线所成角,设两异面直线a、b的方向向量分别为 和 ,,直线与平面所成的角,(范围: ),=,相等,=,=,互补,所以,直线与平面所成的角的正弦值为,二面角,(范围: ),n1,n2,例1:在RtAOB中,AOB=90,现将AOB沿着平面AOB的法向量方向平移到A1O1B1的位置,已知OA=OB=Oo1,取A1B1 、A1O1的中点D1 、F1,求异面直线BD1与AF1所成的角的余弦值。,A,B,O,F1,B1,O1,A1,D1,二、知识讲解与典例分析,A,B,O,F1,B1,O1,A1,D1,解:以点O为坐标原点建立空间直角坐标系,如图所示,并设OA=1,则:,A(1,0,0),B(0,1,0),F1( ,0,1),D1( , ,1),所以,异面直线BD1与AF1所成的角的余弦值为,例1:在RtAOB中,AOB=90,现将AOB沿着平面AOB的法向量方向平移到A1O1B1的位置,已知OA=OB=Oo1,取A1B1 、A1O1的中点D1 、F1,求异面直线BD1与AF1所成的角的余弦值。,x,y,z,点评:向量法求异面直线所成角的余弦值的一般步骤,建系,求两异面直线的方向向量,求两方向向量的夹角的余弦值,得两异面直线所成角的余弦值,例2:正方体ABCD-A1B1C1D1的棱长为1,点E、F分别为CD、DD1的中点, (1)求直线B1C1与平面AB1C所成的角的正弦值; (2)求二面角F-AE-D的余弦值。,A,A1,C1,B1,D,C,B,D1,E,F,例2:(1)求直线B1C1与平面AB1C所成的角的正弦值;,x,y,z,A,D,B,A1,D1,C1,B1,解: (1)以点A为坐标原点建立空间直角坐标系,如图所示,则:,A(0,0,0),B1(1,0,1),C(1,1,0),C1(1,1,1),X1+z1=0,X1+y1=0,取x1=1,得y1=z1=-1,C,故所求直线B1C1与平面AB1C所成的角的正弦值为,点评:向量法求直线与平面所成角的正弦值的一般步骤,建系,求直线的方向向量,求直线的方向向量与平面的法向量 的夹角的余弦值,得直线与平面所成角的正弦值,求平面的法向量,x,y,z,A,D,C,A1,D1,C1,B1,B,F,E,例2 (2)点E、F分别为CD、DD1的中点,求二面角F-AE-D的余弦值。,取y2=1,得x2=z2=-2,(2)由题意知,观察图形知,二面角F-AE-D为锐角,所以所求二面角F-AE-D的余弦值为,点评:法向量法求二面角的余弦值的一般步骤,建系,求两平面的法向量,求两法向量的夹角的余弦值,得二面角的余弦值,a,b,过空间任意一点o分别作异面直线a与b的平行线a与b,那么直线a与b 所成的不大于90的角 ,叫做异面直线a与b 所成的角。,异面直线所成的角,(范围: ),(1)当 与 的夹角不大于90时,异面直线a、b 所成的角 与 和 和 的夹角,a,b,a,b,o,相等,互补,a,b,a,b,o,例3 如图,甲站在水库底面上的点A处,乙站在水坝斜面上的点B处.从A,B到直线 (库底与水坝的交线)的距离AC和BD分别为 和 ,CD的长为 , AB的长为 .求库底与水坝所成二面角的余弦值.,解:如图,,化为向量问题,根据向量的加法法则,进行向量运算,于是,得,设向量 与 的夹角为 , 就是库底与水坝所成的二面角.,因此,所以,回到图形问题,库底与水坝所成二面角的余弦值为,如图,已知:直角梯形OABC中,OABC,AOC=90,直线SO平面OABC,且OS=OC=BC=1,OA=2.求: 异面直线SA和OB所成的角的余弦值; 直线OS与平面SAB所成角的正弦值; 二面角BASO的余弦值.,三、巩固练习,如图,已知:直角梯形OABC中,OABC,AOC=90,SO平面OABC,且OS=OC=BC=1,OA=2.求异面直线SA和OB所成的角的余弦值; OS与平面SAB所成角的正弦值; 二面角BASO的余弦值.,A(2,0,0);,于是我们有,=(2,0,-1);,=(-1,1,0);,=(1,1,0);,=(0,0,1);,B(1,1,0);,S(0,0,1),,则O(0,0,0);,解:以o为坐标原点建立空间直角坐标系,如图所示,x,y,z,C(0,1,0);,所以异面直线SA与OB所成的角的余弦值为,(3)由(2)知面SAB的法向量 =(1,1,2),又OC平面AOS,, 是平面AOS的法向量,,令,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《GB-T 39938-2021室内电取暖 地暖 性能特征 定义、测试方法、尺寸和公式符号》专题研究报告
- 2025年中级经济师(运输经济)《专业知识和实务》测验卷及答案
- 礼仪通识基础教程讲义
- 变压器铁芯叠装工操作测试考核试卷含答案
- 氯乙烯装置操作工岗前可持续发展考核试卷含答案
- 公司白银熔池熔炼工岗位职业健康及安全技术规程
- 水工混凝土维修工操作技能考核试卷含答案
- 环丁砜装置操作工应急处置技术规程
- 《GBT 35150.2-2017 新型干法水泥生产成套装备技术要求 第 2 部分:烧成系统》专题研究报告
- 农产品质量安全检测员岗前基础应用考核试卷含答案
- 沪教版(2024)小学英语三年级上册 Unit7《What do we know about weather》教学设计
- 第三章染料的颜色和结构详解
- DB1301∕T494-2023 城市非机动车停放设施建设及管理规范
- DGTJ08-2232-2017 城市轨道交通工程技术规范
- 中国共产党的百年光辉历程和历史经验红色精美建党104周年七一党课
- 职业规划课件模板图片
- 公共事业管理考试2025年试题及答案精解
- 科创板开户测试题及答案
- 《平凡的世界》人物介绍课件
- 睑板腺按摩治疗讲课件
- 收费站恶劣天气应急处置培训
评论
0/150
提交评论