已阅读5页,还剩32页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
前言 电力电子技术实验的基本要求半导体变流技术、电力电子技术是电气工程及其自动化、自动化等专业的三大电子技术基础课程之一,内容包括电力、电子、控制、计算机技术等多个方面,而实验环节是这些课程的重要组成部分。通过实验,可以加深对理论的理解,培养和提高学生独立动手能力和分析问题、解决问题的能力。一 实验的特点和要求 电力电子技术实验的内容较多、较新,实验系统也比较复杂,系统性较强。电力电子技术与电机控制实验是上述课程理论教学的重要的补充和继续,而理论教学则是实验教学的基础。学生在实验中应学会运用所学的理论知识去分析和解决实际系统中出现的各种问题,提高动手能力;同时通过实验来验证理论,促使理论和实践相结合,使认识不断提高、深化。具体地说,学生在完成指定的实验后,应具备以下能力:(1)掌握电力电子变流装置主电路、触发或驱动电路的构成及调试方法,能初步设计和应用这些电路。 (2)熟悉并掌握基本实验设备、测试仪器的性能及使用方法。 (3)能够运用理论知识对实验现象、结果进行分析和处理,解决实验中遇到的问题。 (4)能够综合实验数据,解释实验现象,编写实验报告。二 实验前的准备 实验准备即为实验的预习阶段,是保证实验能否顺利进行的必要步骤。每次实验前都应先进行预习,从而提高实验质量和效率,否则就有可能在实验时不知如何下手,浪费时间,完不成实验要求,甚至有可能损坏实验装置。因此,实验前应做到:(1)复习教材中与实验有关的内容,熟悉与本次实验相关的理论知识。(2)阅读本教材中的实验指导,了解本次实验的目的和内容;掌握本次实验系统的工作原理和方法;明确实验过程中应注意的问题。(3)写出预习报告,其中应包括实验系统的详细接线图、实验步骤、数据记录表格等。三 实验实施 在完成理论学习、实验预习等环节后,就可进入实验实施阶段。实验时要做到以下几点:(1) 实验开始前,指导教师要对学生的预习报告作检查,要求学生了解本次实验的目的、内容和方法,只有满足此要求后,方能允许实验。 (2) 指导教师对实验装置作介绍,要求学生熟悉本次实验使用的实验设备、仪器,明确这些设备的功能与使用方法。(3) 按实验小组进行实验,实验小组成员应进行明确的分工,以保证实验操作协调,记录数据准确可靠,各人的任务应在实验进行中实行轮换,以便实验参加者能全面掌握实验技术,提高动手能力。(4) 按预习报告上的实验系统详细线路图进行接线,一般情况下,接线次序为先主电路,后控制电路;先串联,后并联。在进行调速系统实验时,也可由2人同时进行主电路和控制电路的接线。(5) 完成实验系统接线后,必须进行自查。串联回路从电源的某一端出发,按回路逐项检查各仪表、设备、负载的位置、极性等是否正确;并联支路则检查其两端的连接点是否在指定的位置。距离较远的两连接端必须选用长导线直接跨接,不得用2根导线在实验装置上的某接线端进行过渡连接。(6) 实验时,应按实验教材所提出的要求及步骤,逐项进行实验和操作。除作阶跃启动试验外,系统启动前,应使负载电阻值最大,给定电位器处于零位;测试记录点的分布应均匀;改接线路时,必须断开主电源方可进行。实验中应观察实验现象是否正常,所得数据是否合理,实验结果是否与理论相一致。(7) 完成本次实验全部内容后,应请指导教师检查实验数据、记录的波形。经指导教师认可后方可拆除接线,整理好连接线、仪器、工具,使之物归原位。四 实验总结 实验的最后阶段是实验总结,即对实验数据进行整理、绘制波形和图表、分析实验现象、撰写实验报告。每位实验参与者都要独立完成一份实验报告,实验报告的编写应持严肃认真、实事求是的科学态度。如实验结果与理论有较大出入时,不得随意修改实验数据和结果,不得用凑数据的方法来向理论靠拢,而是用理论知识来分析实验数据和结果,解释实验现象,找出引起较大误差的原因。实验报告的一般格式如下: (1)实验名称、专业、班级、实验学生姓名、同组者姓名和实验时间。 (2)实验目的、实验线路、实验内容。 (3)实验设备、仪器、仪表的型号、规格、铭牌数据及实验装置编号。(4)实验数据的整理、列表、计算,并列出计算所用的计算公式。(5)画出与实验数据相对应的特性曲线及记录的波形。(6)用理论知识对实验结果进行分析总结,得出明确的结论。(7)对实验中出现的某些现象、遇到的问题进行分析、讨论,写出心得体会,并对实验提出自己的建议和改进措施。(8)实验报告应写在一定规格的报告纸上,保持整洁。(9)每次实验每人独立完成一份报告,按时送交指导教师批阅。实验一 三相桥式全控整流电路实验一、实验目的(1) 加深理解三相桥式全控整流电路的工作原理。(2) 了解KC系列集成触发器的调整方法和各点的波形。二、实验所需挂件及附件序号型 号备注1DJK01 电源控制屏该控制屏包含“三相电源输出”,“励磁电源”等几个模块。2DJK02 晶闸管主电路 3DJK02-1三相晶闸管触发电路该挂件包含“触发电路”,“正桥功放”,“反桥功放” 等几个模块。4DJK06 给定及实验器件DJK02-1三相晶闸管触发电路该挂件包含“二极管”以及“开关” 等几个模块。5D42三相可调电阻6双踪示波器7万用表三、实验线路及原理实验线路如图1-1所示。主电路由三相全控整流电路组成,触发电路为DJKO2-1中的集成触发电路,由KCO4、KC4l、KC42等集成芯片组成,可输出经高频调制后的双窄脉冲链。集成触发电路的原理和三相桥式整流电路的工作原理可参见电力电子技术教材的有关内容。 图中的R利用D42三相可调电阻器,将两个900电阻并联;电感Ld在DJK02面板上,选用700mH,直流电压、电流表由DJK02获得。图 1-1 三相桥式全控整流电路实验原理图四、实验内容(1) 三相桥式全控整流电路。(2) 流或有源逆变状态下,当触发电路出现故障(人为模拟)时观测主电路的各电压波形。五、预习要求(1)阅读电力电子技术教材中有关三相桥式全控整流电路的有关内容。 (2)学习有关集成触发电路的内容,掌握触发电路的工作原理。六、思考题(1)如何解决主电路和触发电路的同步问题?在本实验中,主电路三相电源的相序可任意设定吗?(2)在本实验的整流时,对角有什么要求?为什么?七、实验方法(1)DJK02和DJK02-1上的“触发电路”调试 打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。将DJK01“电源控制屏”上“调速电源选择开关”拨至“直流调速”侧。用10芯的扁平电缆,将DJK02的“三相同步信号输出”端和DJK02-1“三相同步信号输入”端相连,打开DJK02-1电源开关,拨动 “触发脉冲指示”钮子开关,使“窄”的发光管亮。观察A、B、C三相的锯齿波,并调节A、B、C三相锯齿波斜率调节电位器(在各观测孔左侧),使三相锯齿波斜率尽可能一致。将DJK06上的“给定”输出Ug直接与DJK02-1上的移相控制电压Uct相接,将给定开关S2拨到接地位置(即Uct=0),调节DJK02-1上的偏移电压电位器,用双踪示波器观察A相同步电压信号和“双脉冲观察孔” VT1的输出波形,使=150。适当增加给定Ug的正电压输出,观测DJK02-1上“脉冲观察孔”的波形,此时应观测到单窄脉冲和双窄脉冲。将DJK02-1面板上的Ulf端接地,用20芯的扁平电缆,将DJK02-1的“正桥触发脉冲输出”端和DJK02“正桥触发脉冲输入”端相连,并将DJK02“正桥触发脉冲”的六个开关拨至“通”,观察正桥VT1VT6晶闸管门极和阴极之间的触发脉冲是否正常。(2)三相桥式全控整流电路 按图1-1接线,将DJK06上的 “给定”输出调到零(逆时针旋到底),使电阻器放在最大阻值处,按下“启动”按钮,调节给定电位器,增加移相电压,使角在30150范围内调节,同时,根据需要不断调整负载电阻R,使得负载电流Id保持在0.6A左右(注意Id不得超过0.65A)。用示波器观察并记录=30、60、90时的整流电压Ud和晶闸管两端电压Uvt的波形,并记录相应的Ud数值于下表中。306090U2Ud(记录值)Ud/U2Ud(计算值)计算公式:Ud=2.34U2cos (060O) Ud=2.34U21+cos(a+) (60o120o)(3)故障现象的模拟当=60时,将触发脉冲钮子开关拨向“断开”位置,模拟晶闸管失去触发脉冲时的故障,观察并记录这时的Ud、UVT波形的变化情况。八、实验报告(1)画出电路的移相特性Ud =f()。(2)画出触发电路的传输特性 =f(Uct)。(3)画出=30、60、90、120、150时的整流电压Ud和晶闸管两端电压UVT的波形。(4)简单分析模拟的故障现象。九、注意事项(1) 在本实验中,触发脉冲是从外部接入DJKO2面板上晶闸管的门极和阴极,此时,应将所用晶闸管对应的正桥触发脉冲或反桥触发脉冲的开关拨向“断”的位置,并将Ulf及Ulr悬空,避免误触发。(2)为了防止过流,启动时将负载电阻R调至最大阻值位置。实验二 直流斩波电路实验一、实验目的(1)熟悉直流斩波电路的工作原理。(2)熟悉各种直流斩波电路的组成及其工作特点。(3) 了解PWM控制与驱动电路的原理及其常用的集成芯片。二、实验所需挂件及附件序号型 号备 注1DJK01 电源控制屏该控制屏包含“三相电源输出”,“励磁电源”等几个模块。2DJK09 单相调压与可调负载3DJK20 直流斩波电路4D42三相可调电阻5示波器6万用表三、实验线路及原理 1、主电路 、降压斩波电路(Buck Chopper)降压斩波电路(Buck Chopper)的原理图及工作波形如图2-1所示。图中V为全控型器件,选用IGBT。D为续流二极管。由图2-1(b)中V的栅极电压波形UGE可知,当V处于通态时,电源Ui向负载供电,UD=Ui。当V处于断态时,负载电流经二极管D续流,电压UD近似为零,至一个周期T结束,再驱动V导通,重复上一周期的过程。负载电压的平均值为:式中ton为V处于通态的时间,toff为V处于断态的时间,T为开关周期,为导通占空比,简称占空比或导通比(=ton/T)。由此可知,输出到负载的电压平均值UO最大为Ui,若减小占空比,则UO随之减小,由于输出电压低于输入电压,故称该电路为降压斩波电路。(a)电路图(b)波形图图2-1 降压斩波电路的原理图及波形、升压斩波电路(Boost Chopper)升压斩波电路(Boost Chopper)的原理图及工作波形如图2-2所示。电路也使用一个全控型器件V。由图2-2(b)中V的栅极电压波形UGE可知,当V处于通态时,电源Ui向电感L1充电,充电电流基本恒定为I1,同时电容C1上的电压向负载供电,因C1值很大,基本保持输出电压UO为恒值。设V处于通态的时间为ton,此阶段电感L1上积蓄的能量为UiI1ton。当V处于断态时Ui和L1共同向电容C1充电,并向负载提供能量。设V处于断态的时间为toff,则在此期间电感L1释放的能量为(UO-Ui) I1ton。当电路工作于稳态时,一个周期T内电感L1积蓄的能量与释放的能量相等,即:UiI1ton=(UO-Ui) I1toff上式中的T/toff1,输出电压高于电源电压,故称该电路为升压斩波电路。(a) 电路图(b)波形图图2-2 升压斩波电路的原理图及波形、升降压斩波电路(Boost-Buck Chopper)升降压斩波电路(Boost-Buck Chopper)的原理图及工作波形如图2-3所示。电路的基本工作原理是:当可控开关V处于通态时,电源Ui经V向电感L1供电使其贮存能量,同时C1维持输出电压UO基本恒定并向负载供电。此后,V关断,电感L1中贮存的能量向负载释放。可见,负载电压为上负下正,与电源电压极性相反。输出电压为:若改变导通比,则输出电压可以比电源电压高,也可以比电源电压低。当01/2时为降压,当1/21时为升压。(a) 电路图(b) 波形图图2-3 升降压斩波电路的原理图及波形、Cuk斩波电路Cuk斩波电路的原理图如图2-4所示。电路的基本工作原理是:当可控开关V处于通态时,UiL1V回路和负载RL2C2V回路分别流过电流。当V处于断态时,UiL1C2D回路和负载RL2D回路分别流过电流,输出电压的极性与电源电压极性相反。输出电压为:若改变导通比,则输出电压可以比电源电压高,也可以比电源电压低。当01/2时为降压,当1/21时为升压。图2-4 Cuk斩波电路原理图、Sepic斩波电路Sepic斩波电路的原理图如图2-5所示。电路的基本工作原理是:可控开关V处于通态时,UiL1V回路和C2VL2回路同时导电,L1和L2贮能。当V处于断态时,UiL1C2DR回路及L2DR回路同时导电,此阶段Ui和L1既向R供电,同时也向C2充电,C2贮存的能量在V处于通态时向L2转移。输出电压为:若改变导通比,则输出电压可以比电源电压高,也可以比电源电压低。当01/2时为降压,当1/21时为升压。图2-5 Sepic斩波电路原理图、Zeta斩波电路Zeta斩波电路的原理图如图2-6所示。电路的基本工作原理是:当可控开关V处于通态时,电源Ui经开关V向电感L1贮能。当V处于断态后,L1经D与C2构成振荡回路,其贮存的能量转至C2,至振荡回路电流过零,L1上的能量全部转移至C2上之后,D关断,C2经L2向负载R供电。输出电压为:图2-6 Zeta斩波电路原理图若改变导通比,则输出电压可以比电源电压高,也可以比电源电压低。当01/2时为降压,当1/21时为升压。2、控制与驱动电路控制电路以SG3525为核心构成,SG3525为美国Silicon General公司生产的专用PWM控制集成电路,其内部电路结构及各引脚功能如图2-7所示, 图2-7 SG3525芯片的内部结构与所需的外部组件它采用恒频脉宽调制控制方案,内部包含有精密基准源、锯齿波振荡器、误差放大器、比较器、分频器和保护电路等。调节Ur的大小,在A、B两端可输出两个幅度相等、频率相等、相位相差、占空比可调的矩形波(即PWM信号)。它适用于各开关电源、斩波器的控制。详细的工作原理与性能指标可参阅相关的资料。四、实验内容(1)控制与驱动电路的测试(2)六种直流斩波器的测试五、思考题(1)直流斩波电路的工作原理是什么?有哪些结构形式和主要元器件?(2)为什么在主电路工作时不能用示波器的双踪探头同时对两处波形进行观测?六、实验方法 1、控制与驱动电路的测试(1)启动实验装置电源,开启DJK20控制电路电源开关。(2)调节PWM脉宽调节电位器改变Ur,用双踪示波器分别观测SG3525的第11脚与第14脚的波形,观测输出PWM信号的变化情况,并填入下表。Ur(V)1.41.61.82.02.22.42.511(A)占空比(%)14(B)占空比(%)PWM占空比(%)(4) 用示波器分别观测A、B和PWM信号的波形,记录其波形、频率和幅值,并填入下表。观测点A(11脚)B(14脚)PWM波形类型幅值A (V)频率f (Hz)(5) 用双踪示波器的两个探头同时观测11脚和14脚的输出波形,调节PWM脉宽调节电位器,观测两路输出的PWM信号,测出两路信号的相位差,并测出两路PWM信号之间最小的“死区”时间。2、直流斩波器的测试(使用一个探头观测波形)斩波电路的输入直流电压Ui由三相调压器输出的单相交流电经DJK20挂箱上的单相桥式整流及电容滤波后得到。接通交流电源,观测Ui波形,记录其平均值(注:本装置限定直流输出最大值为50V,输入交流电压的大小由调压器调节输出)。按下列实验步骤依次对六种典型的直流斩波电路进行测试。(1)切断电源,根据DJK20上的主电路图,利用面板上的元器件连接好相应的斩波实验线路,并接上电阻负载,负载电流最大值限制在200mA以内。将控制与驱动电路的输出“V-G”、“V-E”分别接至V的G和E端。(2)检查接线正确后,接通主电路和控制电路的电源。(3)用示波器观测PWM信号的波形、UGE的电压波形、UCE的电压波形及输出电压Uo和二极管两端电压UD的波形,注意各波形间的相位关系。(4)调节PWM脉宽调节电位器改变Ur,观测在不同占空比()时,记录Ui、UO和的数值于下表中,从而画出UO=f()的关系曲线。Ur(V)1.41.61.82.02.22.42.5占空比(%)Ui(V)Uo(V)七、实验报告(1)分析图2-7中产生PWM信号的工作原理。(2)整理各组实验数据绘制各直流斩波电路的Ui/UO-曲线,并作比较与分析。(3)讨论、分析实验中出现的各种现象。八、注意事项(1)在主电路通电后,不能用示波器的两个探头同时观测主电路元器件之间的波形,否则会造成短路。(2)用示波器两探头同时观测两处波形时,要注意共地问题,否则会造成短路,在观测高压时应衰减10倍,在做直流斩波器测试实验时,最好使用一个探头。实验三 单相交流调压电路实验一、实验目的 (1)加深理解单相交流调压电路的工作原理。 (2)加深理解单相交流调压电路带电感性负载对脉冲及移相范围的要求。 (3)了解KC05晶闸管移相触发器的原理和应用。二、实验所需挂件及附件序号型 号备注1DJK01 电源控制屏该控制屏包含“三相电源输出”,“励磁电源”等几个模块。2DJK02 晶闸管主电路该挂件包含“晶闸管”以及“电感”等模块。3DJK03-1 晶闸管触发电路该挂件包含“单相调压触发电路”等模块。4D42三相可调电阻5双踪示波器6万用表三、实验线路及原理本实验采用KCO5晶闸管集成移相触发器。该触发器适用于双向晶闸管或两个反向并联晶闸管电路的交流相位控制,具有锯齿波线性好、移相范围宽、控制方式简单、易于集中控制、有失交保护、输出电流大等优点。单相晶闸管交流调压器的主电路由两个反向并联的晶闸管组成,如图3-1所示。图中电阻R利用D42三相可调电阻器,将其两个900电阻并联,晶闸管则利用DJK02上的反桥元件,交流电压、电流表由DJK01控制屏上得到,电抗器Ld从DJK02上得到,用700mH。图 3-1 单相交流调压主电路原理图四、实验内容(1)KC05集成移相触发电路的调试。(2)单相交流调压电路带电阻性负载。(3)单相交流调压电路带电阻电感性负载。五、预习要求(1)阅读电力电子技术教材中有关交流调压的内容,掌握交流调压的工作原理。(2)学习有关单相交流调压触发电路的内容,了解KCO5晶闸管触发芯片的工作原理及在单相交流调压电路中的应用。六、思考题(1)交流调压在带电感性负载时可能会出现什么现象?为什么?如何解决?(2)交流调压有哪些控制方式? 有哪些应用场合?七、实验方法(l)KCO5集成晶闸管移相触发电路调试将DJK01电源控制屏的电源选择开关打到“直流调速”侧使输出线电压为200V,用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,用示波器观察“1”“5”端及脉冲输出的波形。调节电位器RP1,观察锯齿波斜率是否变化,调节RP2,观察输出脉冲的移相范围如何变化,移相能否达到170,记录上述过程中观察到的各点电压波形。(2)单相交流调压带电阻性负载将DJKO2面板上的两个晶闸管反向并联而构成交流调压器,将触发器的输出脉冲端“G1”、“K1”、“G2”和“K2”分别接至主电路相应晶闸管的门极和阴极。接上电阻性负载,用示波器观察负载电压、晶闸管两端电压UvT的波形。调节“单相调压触发电路”上的电位器RP2,观察在不同角时各点波形的变化,并记录=60、60、90、120时的波形。(3)单相交流调压接电阻电感性负载在进行电阻电感性负载实验时,需要调节负载阻抗角的大小,因此应该知道电抗器的内阻和电感量。常采用直流伏安法来测量内阻,如图3-2所示。电抗器的内阻为RL=UL/I (3-1)电抗器的电感量可采用交流伏安法测量,如图3-3所示。由于电流大时,对电抗器的电感量影响较大,采用自耦调压器调压,多测几次取其平均值,从而可得到交流阻抗。 (3-2)电抗器的电感为 (3-3)这样,即可求得负载阻抗角在实验中,欲改变阻抗角,只需改变滑线变阻器R的电阻值即可。图3-2 用直流伏安法测电抗器内阻 图3-3 用交流伏安法测定电感量切断电源,将L与R串联,改接为电阻电感性负载。按下“启动”按钮,用双踪示波器同时观察负载电压U1和负载电流I1的波形。调节R的数值,使阻抗角为一定值,观察在不同角时波形的变化情况, 记录、= 、三种情况下负载两端的电压U1和流过负载的电流I1波形。八、实验报告(1)整理、画出实验中所记录的各类波形。(2)分析电阻电感性负载时,角与角相应关系的变化对调压器工作的影响。(3)分析实验中出现的各种问题。九、注意事项(1) 触发脉冲是从外部接入DJKO2面板上晶闸管的门极和阴极,此时,应将所用晶闸管对应的正桥触发脉冲或反桥触发脉冲的开关拨向“断”的位置,并将Ulf及Ulr悬空,避免误触发。(2)可以用DJK02-1上的触发电路来触发晶闸管。(3)由于“G”、“K“输出端有电容影响,故观察触发脉冲电压波形时,需将输出端“G”和“K”分别接到晶闸管的门极和阴极(或者也可用约100左右阻值的电阻接到“G”、“K”两端,来模拟晶闸管门极与阴极的阻值),否则,无法观察到正确的脉冲波形。实验四 西门子TCA785集成触发电路实验一、实验目的(1)加深理解锯齿波集成同步移相触发电路的工作原理及各元件的作用。(2)掌握西门子的Tca785集成锯齿波同步移相触发电路的调试方法。二、实验所需挂件及附件 序号 型 号 备注 、 1 DJK01电源控制屏该控制屏包含“三相电源输出”等几个模块。 2 DJK03-1晶闸管触发电路该挂件包含“单相集成触发电路”等模块。 3双踪示波器三、实验线路及原理西门子Tca785集成电路的内部框图如图4-1所示。Tca785集成块内部主要由“同步寄存器”、“基准电源”、“锯齿波形成电路”、“移相电压”和“锯齿波比较电路”和“逻辑控制功率放大”等功能块组成。 同步信号从TCA785集成电路的第5脚输入, “过零检测”部分对同步电压信号进行检测,当检测到同步信号过零时,信号送“同步寄存器”。 图4-1西门子Tca785集成电路内部框图 图4-2 Tca785集成移相触发电路原理图 “同步寄存器”输出控制锯齿波发生电路,锯齿波的斜大小由第9脚外接电阻和10脚外接电容决定:输出脉冲宽度由12脚外接电容的大小决定;14、15脚输出对应负半周和正半周的触发脉冲;移相控制电压从11脚输入。具体电路如图4-2所示。电位器RPI主要调节锯齿波的斜率,电位器RP2IJ调节输入的移相控制电压,脉冲从14、15脚输出,输出的脉冲恰好互差180。,可供单相整流及逆变实验用,各点波形请参考图4-3。图4-3单相集成锯齿波触发电路的各点电压波形(Q=90。)电位器RPl、RP2均已安装在挂箱的面板上,同步变压器副边已在挂箱内部接好,所有的测试信号都在面板上引出。四、实验内容(1)Tca785集成移相触发电路的调试。(2)Tca785集成移相触发电路各点波形的观察和分析。五、预习要求阅读有关Tca785触发电路的内容,弄清触发电路的工作原理。六、思考题(1)Tca785触发电路有哪些特点?(2)Tca785触发电路的移相范围和脉冲宽度与哪些参数有关?七、实验方法将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V+10,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“DZSZl型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220v左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-l的“外接220V”端,按下“启动”按钮,打开DJK03-l电源开关,这时挂件中所有的触发电路都开始工作。用双踪示波器一路探头观测15V的同步电压信号,另一路探头观察Tca785触发电路,同步信号“l”点的波形,“2”点锯齿波,调节斜率电位器RPl,观察“2”点锯齿波的斜率变化,“3”、“4”互差180的触发脉冲,最后观测输出的四路触发电压波形,其能否在30170范围内移相?同时观察同步电压和“l”点的电压波形,了解“1”点波形形成的原因。 观察“2”点的锯齿波波形,调节电位器RPl,观测“2”点锯齿波斜率的变化。观察“3”、“4”两点输出脉冲的波形,记下各波形的幅值与宽度。(2)调节触发脉冲的移相范围 调节TRP2电位器。用示波器观察同步电压信号和“3”点的波形,观察和记录触发脉冲的移相范围。(3)调节电位器RP2使Q=60,观察并记录U:UI及输出“G、K”脉冲电压的波形,标出其幅值与宽度,并记录在下表中(可在示波器上直接读出,读数时应将示波器的“VDIV”和“tDIV”微调旋钮旋到校准位置)。 UI U2 U3 L; 幅值(V) 宽度(ms)八、实验报告(1)整理、描绘实验中记录的各点波形,并标出其幅值和宽度。(2)讨论、分析实验中出现的各种现象。实验五 单相正弦波脉宽调制SPWM电路实验一、实验目的(1)熟悉单相变频电路原理及电路组成。(2)熟悉ICL8038的功能。(3)掌握SPWM波产生的基理。二、实验所需挂件及附件序号型 号备 注1DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。2DJK06 给定及实验器件该挂件包含“二极管”以及“开关”等模块。3DJK09 单相调压与可调负载4双踪示波器5万用表三、实验线路及原理采用SPWM正弦波脉宽调制,通过改变调制频率,实现交直交变频的目的。实验电路由三部分组成:即主电路, 驱动电路和控制电路。(1)主电路部分:AC/DC (整流) DC/AC (逆变) 图5-1 主电路结构原理图如图5-1所示, 交直流变换部分(AC/DC)为不可控整流电路(由实验挂箱DJK09提供);逆变部分(DC/AC)由四只IGBT管组成单相桥式逆变电路,采用双极性调制方式。输出经LC低通滤波器,滤除高次谐波,得到频率可调的正弦波(基波)交流输出 。本实验设计的负载为电阻性或电阻电感性负载,在满足一定条件下,可接电阻启动式单相鼠笼式异步电动机。实验时可由面板上的“负载选择”开关进行选择。 图5-2 驱动电路结构原理图(2)驱动电路:如图5-2(以其中一路为例)所示,采用IGBT管专用驱动芯片M57962L,其输入端接控制电路产生的SPWM信号,其输出可用以直接驱动IGBT管。其特点如下:采用快速型的光藕实现电气隔离。具有过流保护功能,通过检测IGBT管的饱和压降来判断IGBT是否过流,.过流时IGBT管CE结之间的饱和压降降到一定值,使8脚输出高电平,在光藕TLP521的输出端OC1呈现低电平,经过流保护电路(见图5-3),使4013的输出Q端呈现低电平,送控制电路,起到了封锁保护作用。 图5-3保护电路结构原理图(3)控制电路: 控制电路如图5-4所示,它是由两片集成函数信号发生器ICL8038为核心组成,其中一片8038产生正弦调制波Ur,另一片用以产生三角载波Uc,将此两路信号经比较电路LM311异步调制后,产生一系列等幅,不等宽的矩形波Um,即SPWM波。Um经反相器后,生成两路相位相差180度的PWM波,再经触发器CD4528延时后,得到两路相位相差180度并带一定死区范围的两路SPWM1和SPWM2波,作为主电路中两对开关管IGBT的控制信号。图54 控制电路结构框图 图55控制电路结构原理图各波形的观测点均已引到面板上,可通过示波器进行观测。为了便于观察SPWM波,面板上设置了“测试”和“运行”选择开关,在“测试”状态下,三角载波Uc的频率为180HZ左右,此时可较清楚地观察到异步调制的SPWM波,通过示波器的锁定功能可清晰地观测SPWM波,但在此状态下不能带载运行,因载波比N太低,不利于设备的正常运行。在“运行”状态下,三角载波Uc频率为10KHZ左右, 因波形的快速闪动致使无法观察到SPWM波,通过示波器的锁定功能并经扩展后也可清晰地观测SPWM波。正弦调制波Ur频率的调节范围设定为5-60Hz。 控制电路还设置了过流保护接口端STOP,当有过流信号时,STOP呈低电平,经与门输出低电平,封锁了两路SPWM信号,使IGBT 关断,起到保护作用。四、实验内容(1)控制信号的观测。(2)带电阻及电阻电感性负载。(3)带电机负载(选做)。五、思考题(1)为了使输出波形尽可能地接近正弦波,可采取什么措施?(2)调制波可否采用三角波?(3)分析开关死区时间对输出的影响。六、实验方法(1)控制信号的观测在主电路不接直流电源时,打开控制电源开关,并将DJK14挂箱左侧的钮子开关拨到“测试”位置。观察正弦调制波信号Ur的波形,测试其频率可调范围;观察三角载波Uc的波形,测试其频率;改变正弦调制波信号Ur的频率,再测量三角载波Uc的频率,判断是同步调制还是异步调制; 比较“PWM+”,“PWM-” 和“SPWM1”,“SPWM2”的区别,仔细观测同一相上下两管驱动信号之间的死区延迟时间。(2) 带电阻及电阻电感性负载在实验步骤1之后,将DJK14挂箱面板左侧的钮子开关拨到“运行”位置,将正弦调制波信号Ur的频率调到最小,选择负载种类:将“负载选择”开关拨至R,L位置,接DJK06给定及实验器件,然后将主电路接通由DJK09提供的直流电源(通过调节交流侧的自藕调压器,使输出直流电压保持为200V),由小到大调节正弦调制波信号Ur的频率,观测负载电压的波形,记录其波形参数(幅值、频率)。保
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025工程委托合同范本
- 酒店员工薪酬福利体系
- LOL职业选手人物介绍
- 毕业设计进展报告
- 白内障手术后护理指南
- 护理病例讨论
- 铁塔维护考试模拟题目及答案
- 养老护理员年度总结报告
- 广电营业员年终总结
- (完整版)园林植物造景试题及答案
- 河南省平顶山市2025-2026学年上学期九年级历史期中试题(含答案)
- 科室质量安全管理小组会议记录
- 2025-2026学年人教版(2024)八年级上册期中地理模拟试卷(含答案)
- 2025中国水利水电出版传媒集团有限公司公开招聘工作人员3人笔试历年典型考点题库附带答案详解2套试卷
- 2025下半年江南大学管理岗、其他专技岗招聘31人笔试考试参考试题及答案解析
- 2025~2026学年八年级上册物理期中测试卷
- 2026届新高考物理热点冲刺复习 从“心”出发向“新”而行-三新背景下物理高考的守正与创新
- 学堂在线 人工智能 章节测试答案
- 风险评估标准作业流程表合规风险管理版
- 全国大学生职业规划大赛《卫星通信与导航技术》专业生涯发展展示【高职(专科)】
- 凭什么让学生服你:读书分享技巧
评论
0/150
提交评论