全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课时跟踪检测(十一) 函数的极值1已知函数yxln(1x2),则函数yxln(1x2)的极值情况是()A有极小值B有极大值C既有极大值又有极小值 D无极值解析:选Dy1(1x2)10,函数yxln(1x2)无极值. 2函数f(x)x2ln x的极值点为()A0,1,1 B.C D.,解析:选B由已知,得f(x)的定义域为(0,),f(x)3x,令f(x)0,得x.当x时,f(x)0;当0x时,f(x)0.所以当x时,f(x)取得极小值从而f(x)的极小值点为x,无极大值点,选B.3函数f(x)x33bx3b在(0,1)内有极值,则()A0b1 Bb0 Db解析:选Af(x)3x23b.因f(x)在(0,1)内有极值,所以f(x)0有解,x,01,0b0,即f(x)0;当x(3,0)时,xf(x)0;当x(0,3)时,xf(x)0,即f(x)0;当x(3,)时,xf(x)0,即f(x)0;当x(1,2)时,f(x)0.f(x)有两个极值点1和2,且当x2时函数取得极小值,当x1时,函数取得极大值,故只有不正确答案:7求下列函数的极值(1)f(x)x3x23x4;(2)f(x)x3ex.解:(1)f(x)x3x23x4,f(x)x22x3.令f(x)0,得x13,x21.当x变化时,f(x),f(x)的变化,如表所示:x(,1)1(1,3)3(3,)f(x)00f(x)极大值极小值x1是f(x)的极大值点,x3是f(x)的极小值点f(x)极大值f(1),f(x)极小值f(3)5.(2)f(x)3x2exx3exexx2(x3),由f(x)0得x0或x3.当x变化时,f(x)与f(x)的变化如表所示:x(,3)3(3,0)0(0,)f(x)00f(x)极小值无极值由表可知x3是f(x)的极小值点f(x)极小值f(3)27e3,函数无极大值8已知函数f(x)16x320ax28a2xa3,其中a0,求f(x)的极值解:f(x)16x320ax28a2xa3,其中a0,f(x)48x240ax8a28(6x25axa2)8(2xa)(3xa),令f(x)0,得x或x.(1)当a0时,则随着x的变化,f(x),f(x)的变化情况如下表:xf(x)00f(x)极大值极小值当x时,函数取得极大值f;当x时,函数取得极小值f0.(2)当a0时,0时,函数f(x)在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 住宅工程安全生产与风险控制方案
- 游泳酒店营销方案(3篇)
- 钢厂拆除施工方案(3篇)
- 国外会员活动策划方案(3篇)
- 咖啡粉活动策划方案(3篇)
- 普洱塑木施工方案(3篇)
- 搭设围挡施工方案(3篇)
- 木制走廊施工方案(3篇)
- 活动服装会展方案策划(3篇)
- 客房营销方案弊端(3篇)
- 2022年12月上海交响乐团公开招聘4人上岸冲刺题3套【600题带答案含详解】
- IPD开发流程与传统开发流程的差别
- 影视制片管理汇总课件
- 安全教育主题班会-住校生的安全常识课件
- 严重精神障碍患者管理工作计划
- 细胞免疫荧光技术课件
- (完整版)耳鼻喉临床技术操作规范
- 【学考】高中物理会考(学业水平考试)公式及知识点总结
- GB∕T 25279-2022 中空纤维帘式膜组件
- 胃早癌的简述课件
- 主体结构分部工程验收汇报
评论
0/150
提交评论