



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精品论文大集合truncated painleve expansion and auto-backlund transformation for a kind of generalized variable-coefficient kadomtsev-petviashvili equationshe tian-juna , chen yonga,bnonlinear science center and department of ningbo universitye-mail:abstract among the topics attracting much attention in mathematical physics are the variable-coefficient generalizations of the well-known kadomtsev-petviashvili equation (gvckp) . we make use of both of truncated painleve expansion and symbolic compu- tation leads to a new class of analytical solutions to a kind of gvckps, and we obtain an auto-backlund transformation .pacs numbers: 02.30.jrkey words:truncated painleve expansion; variable coefficient ; symbolic computation; auto- backlund transformation;a kind of generalized variable-coefficient kadomtsev- petviashvili equations. left1 introductionwith its many physical applications from water waves to plasma physics and field theories, the well-known kadomtsev-petviashvili (kp) equation is a completely integrable soliton equation which also has some impressive properties. however, the physical situa- tions in which the kp equation arises tend to be highly idealized, owing to the assumption of constant coefficients, e.g., in the propagation of small-amplitude surface waves in a fluid of constant depth1 . in recent years, much attention has been paid on the study of non- linear partial differential equations with variable coefficient, especially, variable coefficient burger and kdv equations25 the variable-coefficient generalizations of the kadomtsev- petviashvili equation (gvckp) , however, are able to provide more realistic models in physical situations such as in the canonical and cylindrical cases, propagation of surface waves in large channels of varying width and depth with nonvanishing vorticity, etc. re- cently, much progress has been made in the studies of certain gvckps obtaining their solitary wave solutions, soliton interactions, complete integrability, lax pairs, etc. (see refs.611 and references therein.) the development of symbolic computation enables us, in this paper, to solve analytically the following a kind of variable-coefficient generaliza- tions of kadomtsev-petviashvili equation (gvckp)11xutx + u2 + uuxx + uxxxx + uyy + (b1y + b0)uxy + (c1y + c0)uxx = 0(1) where c1 = c1 (t), c0 = c0(t), b1 = b1(t), b0 = b0(t), = 1 are arbitrary functions withrespect to twhich show (1) has an infinite-dimensional symmetry group and the existence of an infinite dimensional symmetry group makes it possible to use lie group theory to obtain large classes of solutions.5this paper is organized as follows. in section.2, we introduce truncated painleve ex- pansion,in section.3, painleve backlund equations and an auto-backlund transformation are give,some calculations are presented in section 4.2 truncated painleve expansionthe sufficient condition for a partial differential equation (pde) to be completely in- tegrable is that it possesses the painleve property , the solutions to the pde, written asu(x, y, t) = (x, y, t)j x un (x, y, t)(x, y, t)n (2)n=0are single-valued in the neighbourhood of a noncharacteristic, movable singularity mani- fold,m = (x, y, t)|(x, y, t) = 0(3)where j is a natural number to be determined; un (x, y, t) and (x, y, t) are analytic func- tions with u0(x, y, t) = 0 at present, we do not require eq. (1) to be completely integrable,but truncate the painleve expansion (i.eeq. (2) ) at the constant-level term,ju(x, y, t) = (x, y, t)j x un (x, y, t)(x, y, t)n (4)n=0to investigate the backlund transformation as well as the analytical solutions to eq. (1)the leading-order analysis for eq. (1) yields j = 2, so thatu(x, y, t) = u0(x, y, t) + u1(x, y, t) + u (x, y, t) (5)(x, y, t)2(x, y, t) 23 painleve backlund equations and an auto-backlund trans- formationwhen substituting eq(5) into eq.(1) with maple, we make the coefficients of like powers of vanish, so as to obtain the following set of painleve-backlund equations,x6 : u0 = 122(6)5 : 72u02 xx + 12u1 4 48u0x3 4u0 u0xx + 6u02 u1 u2xx = 0(7)x x x x 04 : 6u0xt + 72u0xxxx + 36u0xx2 + 18u02+ 24u0xxxx 36u12 xxxxxx24u1x3 6u0u1xx 6u1u0xx + 6u02 + 6c0u02 + 3u22xy x1 x+u0u0xx + 6u2u02 3u1 u0xx + 6b1yu0xy + 6b0u0xy + 6c1yu02 = 0xx3 : 2b1yu0y x 2b1yu0xy + 2b1u1y xx4c1 yu0xx + 2c1yu12 + 2u1t x 2u0xt 2u0t x 2u0xt 8u0xxx xxxx2u0xxxx + u0u1xx + u1u0xx 12u0xx xx + 6u12 8u0x xxx + 12u1xx 2u2xx + 2u1 2 2b0u0y x 2b1u0x y 4c0 u0x x + 2c0u12 + 24u1x xxx1 y x+8u1xxxx 2u0yy 2b0 u0xy 2c0u0xx 2b0u2xx + 2b1yu1xyx2b1 yu0xy 2c1yu0xx 4u1u1x x 4u2 u0x x + 2u2u124u0u2x x 4u0y y + 2u0xu1x = 0(8)1x2 : 2u2xu1x 2c0 xu1x + 2u2x u0x + u2 b0y u1x b0 xu1y 2y u1y 2u1 xu2x + b1yu0xyu1xt u1xxxx b1yu1y x b1yu1x y + c0u0xx + u0xxxx4u1x xxx + u0xt 2c1yxu1x u1u2xx u1 c0xx u1 b0 yx u1yy + c1yu0xx b1 yu1xyc1yu1xx + b0 u0xy + u2u0xx + u1u1xx + u0yy + u0 u2xx 6u1xx xx 4u1xxx x u1x t u1t x = 01 : u2 u1xx + u1xt + u1xxxx + 2u2x u1x + b1yu1xy + c0 u1xx + u1yy + b0u1xy u1u2xx + c1yu1xx = 0 (9)2x0 : u2tx + u2+ u2u2xx + u2xxxx + u2yy + (b1 y + b0)u2xy + (c1y + c0)u2xx = 0(10)to simplify the above equation,when substituting (6)into (7) we haveu1 = 12xx(11) when substituting (6)and (11)into (8) we haveu2 = (c1 y + c0) 4xxxtx xb1 yy xb0y x3 2xx+2x2y 2x(12)when substituting (6), (11)and (12)into (9) we haveb1y2 xy b0xxxy + b0 2 xy 4xxxxxx xxxt b1yxxy xx+33x xx2 + yy 2 + xt 2 + xxxx 2 = 0(13)xxy xxxwhen substituting (6) ,(11),(12)and (13)into (9), (10) we have22y xx + xyy 2xy xy = 0(14)ywe are able to find a family of exact analytical solutions to eq(1)as follows:2u = 12x + 12xxxxxtb1yyb0 y2 23xxx2 (c1 y + c0) 4 x x+2 + 2xxx(15)with the constraint equation (13) and (14) for , c1, c0, b1, b0, we note that once a backlund transformation discovered, and a set of seed solutions is given, one will be able to find an infinite number of solutions by the repeated applications of the transformation, i.e., to generate a hierarchy of solutions with increasing complexity. in the next section of the paper, we will find a family of the exact analytic solutions to eq(1).4 calculationsseveral comments are in order,eq(1) is larger for special cases of the functions b1, b0 , c1 and c0. f. gungor and p. winternitz11have shown that eq(1)have finite point transfor- mation, when b1 = 0 eq(1) have an infinite-dimensional lie point symmetry group andwhich lie algebra has a kac-moody-virasoro structure.let us now consider the cases 1:sample solution. a trial solutionb1 = 0(16) = 1 + ea(t)x+(t)y+b(t)(17) when substituting eq(16)and eq(17) into eq(13)and eq(14). with maple,symbolic com-putation ,we havea(t) = c ,where c is constant and (t), b(t)are arbitrary functions withrespect to t we find a family of the analytical solutions of eq(1) as follows:442du = (c e 10c ed+ c0 c2+ 2c0c2ed+ c0c2 e2d+ c1 yc2+ 2c1yc2ed+ c1yc2ed+ c4)(c + ced )22(b0(t)c + 2b0(t)ced + b0 (t)ce2d + ct (t)y + 2ct (t)yed + ct (t)yed (c + ced )2(2cbt (t)ed + cbt (t)e2d ct (t)ye2d + (t)2 + 2(t)2ed + (t)2 e2d ) (c + ced )22+ cbt (t)(18)where d = cx + (t)y + b(t)5 summary and conclusionto sum up, we introduce truncated painleve expansion ,with the truncated painleve expansion analysis and the symbolic computation, we have shown that the set of equa- tions(13)and (14),which constitutes an auto-backlund transformation, exists for the gen- eralized kp equation in eq.(1) . leads to a new class of analytical solutions to a kind of gvckps. we obtain an auto-backlund transformation . and note that once a backlund transformation discovered, and a set of seed solutions is given, one will be able to find an infinite number of solutions by the repeated applications of the transformation and wwhen (b1 = 0) .a solitonic solutions(20)is obtain and some explicit solution is given.acknowledgements:the work is supported by the national natural science foundation of china (grantno. 10735030)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高炉炼铁工质量管控考核试卷及答案
- 高炉炼铁工工艺考核试卷及答案
- 浴池服务员工艺创新考核试卷及答案
- 固体矿产钻探工适应性考核试卷及答案
- 压铸模具工新员工考核试卷及答案
- 课件文案简短
- 金属切割考试题及答案
- 社群健康助理员入职考核试卷及答案
- 飞机数字化装配工三级安全教育(车间级)考核试卷及答案
- 2025年中国T/R双弹单面华达呢数据监测研究报告
- 1.2 规划初中生活(课件)-2024-2025学年七年级道德与法治上册 (统编版2024)
- 乒乓球聘用教练合同模板
- 叙事护理课件
- DB11-T+2260-2024中成药单位产品能源消耗限额
- NB-T+10131-2019水电工程水库区工程地质勘察规程
- 民办非企业单位年度调查报告书
- 消化道出血护理新进展
- 【浅析机械自动化技术的发展现状及发展趋势8900字(论文)】
- 新材料引领创新创造的新驱动器
- MOOC 大学计算机-思维与应用-周口师范学院 中国大学慕课答案
- (2024年)TWI培训课件完整版
评论
0/150
提交评论