已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.2 用样本估计总体,.2.2用样本的数字特征估计总体的 数字特征,第一课时,问题提出,1.对一个未知总体,我们常用样本的频率分布估计总体的分布,其中表示样本数据的频率分布的基本方法有哪些?,2.美国NBA在20062007年度赛季中,甲、乙两名篮球运动员在随机抽取的12场比赛中的得分情况如下: 甲运动员得分:12,15,20,25,31,31, 36,36,37,39,44,49. 乙运动员得分:8,13,14,16,23,26, 28,38,39,51,31,29.,如果要求我们根据上面的数据,估计、比较甲,乙两名运动员哪一位发挥得比较稳定,就得有相应的数据作为比较依据,即通过样本数据对总体的数字特征进行研究,用样本的数字特征估计总体的数字特征.,甲运动员得分:12,15,20,25,31,31, 36,36,37,39,44,49. 乙运动员得分:8,13,14,16,23,26, 28,38,39,51,31,29.,用样本数字特征,估计总体数字特征,知识探究(一):众数、中位数和平均数,思考1:在初中我们学过众数、中位数和平均数的概念,这些数据都是反映样本信息的数字特征,对一组样本数据如何求众数、中位数和平均数?,概念,三数概念,1、众数 在一组数据中,出现次数最多的数据叫做这一组数据的众数。,2、中位数 将一组数据按大小依次排列,把处在最中间位置的一个数据(或两个数据的平均数)叫做这组数据的中位数。,3、平均数 一组数据的总和除以数据的个数所得的值。,思考2:在城市居民月均用水量样本数据的频率分布直方图中,你认为众数应在哪个小矩形内?由此估计总体的众数是什么?,思考3:在频率分布直方图中,每个小矩形的面积表示什么?中位数左右两侧的直方图的面积应有什么关系?,思考4:在城市居民月均用水量样本数据的频率分布直方图中,从左至右各个小矩形的面积分别是0.04,0.08,0.15,0.22,0.25,0.14,0.06,0.04,0.02.由此估计总体的中位数是什么?,0.5-0.04-0.08-0.15-0.22=0.01,0.50.010.25=0.02,中位数是2.02.,思考5:平均数是频率分布直方图的“重心”,在城市居民月均用水量样本数据的频率分布直方图中,各个小矩形的重心在哪里?从直方图估计总体在各组数据内的平均数分别为多少?,0.25,0.75,1.25,1.75,2.25, 2.75,3.25,3.75,4.25.,思考6:根据统计学中数学期望原理,将频率分布直方图中每个小矩形的面积与小矩形底边中点的横坐标之积相加,就是样本数据的估值平均数. 由此估计总体的平均数是什么?,0.250.04+0.750.08+1.250.15+1.750.22+2.250.25+2.750.14+3.25 0.06+3.750.04+4.250.02=2.02(t). 平均数是2.02.,平均数与中位数相等,是必然还是巧合?,思考7:从居民月均用水量样本数据可知,该样本的众数是2.3,中位数是2.0,平均数是1.973,这与我们从样本频率分布直方图得出的结论有偏差,你能解释一下原因吗?,频率分布直方图损失了一些样本数据,得到的是一个估计值,且所得估值与数据分组有关.,注:在只有样本频率分布直方图的情况下,我们可以按上述方法估计众数、中位数和平均数,并由此估计总体特征.,思考8:一组数据的中位数一般不受少数几个极端值的影响,这在某些情况下是一个优点,但它对极端值的不敏感有时也会额成为缺点,你能举例说明吗?样本数据的平均数大于(或小于)中位数说明什么问题?你怎样理解“我们单位的收入水平比别的单位高”这句话的含义?,如:样本数据收集有个别差错不影响中位数;大学毕业生凭工资中位数找单位可能收入较低. 平均数大于(或小于)中位数,说明样本数据中存在许多较大(或较小)的极端值. 这句话具有模糊性甚至蒙骗性,其中收入水平是员工工资的某个中心点,它可以是众数、中位数或平均数.,例题1:某工厂人员及工资构成如下:,指出这个问题的众数、中位数、平均数。 这个问题中,平均数能客观地反映该工厂的工资水平吗?为什么?,小结作业,1.用样本的数字特征估计总体的数字特征,是指用样本的众数、中位数、平均数等统计数据,估计总体相应的统计数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 暑假惠民活动方案策划
- 六一泳池营销方案
- 2025-2026学年度江苏省盐城市五校高二上学期期中联考历史试题(含答案)
- 2025年《外科护理学》自考核心备考试题库题库300题及答案
- 2025年钳工高级实操试题附答案
- 2025年广州中医药大学方剂学试题及答案
- 2025年教师资格面试真题归总(结构化+试讲)及答案
- 2025年导游资格证考试笔试导游法规与政策试卷及答案
- (2025年)汕头教师编制笔试题型及答案
- 鞋铺营销方案
- 《动物细胞结构与功能》课件
- 小型机械室内拆除地面混凝土施工方案
- DBJ51-T 040-2021 四川省工程建设项目招标代理操作规程
- 2024年版酒店预付充值卡协议模板版
- 《关节炎的鉴别诊断》课件
- 《酒店客户关系管理 》课件-项目八 酒店客户关系数字化运营
- 外科护理学(宁夏医科大学)知到智慧树章节测试课后答案2024年秋宁夏医科大学
- 人教版(2024新版)七年级上册生物期末复习课件
- 2024年度高性能计算服务合同3篇
- 激光熔覆技术优化
- 四川宜宾五粮液股份有限公司招聘笔试题库2024
评论
0/150
提交评论