




已阅读5页,还剩28页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
例:如图,ABC为等腰三角形,O是底边BC的 中点,腰AB与O相切于点D.,求证:AC是O的切线.,E,24.2.2 切线长定理,经过圆外一点作圆的切线,这点和切点之间的线段的长叫做切线长。,数学探究,O,二、探索切线长定理 问题:若从O外的一点引两条切线PA,PB,切点分别是A、B,连结OA、OB、OP,你能发现什么结论?并证明你所发现的结论。,猜想: PA=PB OPA=OPB,证明:PA,PB与O相切,点A,B是切点 OAPA,OBPB 即OAP=OBP=90 OA=OB,OP=OP RtAOPRtBOP(HL) PA = PB OPA=OPB,试用文字语言叙述你所发现的结论,PA、PB分别切O于A、B,PA = PB,OPA=OPB,归纳总结切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。,几何语言:,反思:切线长定理为证明线段相等、角相等提 供了新的方法,探究:PA、PB是O的两条切线,A、B为切点,直线OP交于O于点D、E,交AB于C。,B,A,P,O,C,E,D,(1)写出图中所有的垂直关系,OAPA,OB PB,AB OP,(3)写出图中所有相等的线段,(2)写出图中与OAC相等的角,OAC=OBC=APC=BPC,OA=OB=OD=OE, PA-=PB, AC=BC, AE=BE,(3)如图,PA、PB、DE分别切O于A、B、C,DE分别交PA,PB于D、E,已知P到O的切线长为8CM,则 PDE的周长为( ),A,A 16cm,D 8cm,C 12cm,B 14cm,D,C,B,E,A,P,例2、如图,过半径为6cm的O外一点P作圆的切线PA、PB,连结PO交O于F,过F作O切线分别交PA、PB于D、E,如果PO10cm, 求PED的周长。,思考:当切点F在弧AB上运动时,问PED的周长、DOE的度数是否发生变化,请说明理由。,思考,如图,一张三角形的铁皮,如何在它上面截下 一块圆形的用料,并且使圆的面积尽可能大呢?,I,D,三角形的内切圆:,与三角形各边都相切的圆叫做三角形的内切圆,三角形的内心:,三角形的内切圆的圆心叫做三角形的内心。(四颗心.),三角形的内心是三角形三 条角平分线的交点,它到 三角形三边的距离相等。,数学探究,例:如图, ABC的内切圆O与BC、CA、AB分别相切于点D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的长。,x,13x,x,13x,9x,9x,例题选讲,已知:如图,O是RtABC的内切圆,C是直角,三边长分别是a,b,c. 求O的半径r.,(1)Rt的三边长与其内切圆半径间的关系,13,探究三,求直角三角形内切圆的半径,探究三,求一般三角形内切圆的半径,(2)已知:如图,ABC的面积为S,三边长分别为a,b,c. 求内切圆O的半径r.,14,小练习,1.边长为3、4、5的三角形的内切圆的半径为,2. 边长为5、5、6的三角形的内切圆的半径为,3. 已知:ABC的面积S=4cm,周长等于 10cm.求内切圆O的半径r.,1、如图,ABC中, ABC=50,ACB=75 ,点O 是ABC的内心,求 BOC的度数。,随堂训练,变式:ABC中, A=40,点O是ABC的内心,求 BOC的度数。, BOC= 90+ A,2、ABC的内切圆半径为 r , ABC的周长为 l ,求ABC的面积。(提示:设内心为O,连接OA、OB、OC。),O,A,C,B,r,r,r,知识拓展,若ABC的内切圆半径为 r , 周长为 l , 则SABC= lr,切线长定理 拓展,回顾反思,1.切线长定理,从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。,回顾反思,2.三角形的内切圆、内心、内心的性质,知识拓展,拓展一:直角三角形的外接圆与内切圆,1.直角三角形外接圆的圆心(外心)在_,半径为_.,2.直角三角形内切圆的圆心(内心)在_,半径r=_.,a,b,c,斜边中点,斜边的一半,三角形内部,知识拓展,3.已知:如图,PA、PB是O的切线,切点分别是A、B,Q为O上一点,过Q点作O的切线,交PA、PB于E、F点,已知PA=12cm,P=70,求:PEF的周长和EOF的大小。,知识拓展,4.RtABC中,C=90,a=3,b=4,则内切圆的半径是_.,1,5.直角三角形的外接圆半径为5cm,内切圆半径为1cm,则此三角形的周长是_.,22cm,知识小结,直角三角形的外接圆与内切圆,1.直角三角形外接圆的圆心(外心)在_,半径为_.,2.直角三角形内切圆的圆心(内心)在_,半径r=_.,a,b,c,斜边中点,斜边的一半,三角形内部,课前训练,1、已知,如图,PA、PB是O的两条切线,A、B为切点.直线 OP 交 O 于点 D、E,交 AB 于 C. (1)写出图中所有的垂直关系; (2)如果 PA = 4 cm , PD = 2 cm , 求半径 OA的长.,知识拓展,2.已知:两个同心圆PA、PB是大圆的两条切线,PC、PD是小圆的两条切线,A、B、C、D为切点。求证:AC=BD,试一试:如图ABC中,C90,AC6,BC8,三角形三边与O均相切,切点分别是D、E、F,求O的半径。,切线长定理:,从圆外一点可以引圆的两条切线,它们的切线长相等。这一点和圆心的连线平分这两条切线的夹角。,从圆外一点引圆的切线,这个点与切点间的线段的长称为切线长。,切线长:,知识回顾,1、如图,一圆内切于四边形ABCD,且AB=16,CD=10,则四边形的周长为( ) (A)50 (B) 52 (C)54 (D) 56,巩固练习:,2、已知:在ABC中,BC14cm,AC9cm,AB13cm,BC,AC,AB分别与O切于点D、E、F,求AF,BD和CE的长。,3、以正方形ABCD的一边BC为直径的半圆上有一个动点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国旅游策划师职业资格认证考试备考手册
- 紧急应变能力提升方案
- 2025年AIGC内容检测鲁棒性试题(含答案与解析)
- 新能源上市公司2025年研发创新与技术转化效率研究报告:产业创新
- 2025年即时配送行业效率提升关键:配送路径优化与成本控制策略
- 2025年废弃矿井资源再利用技术路径与产业模式创新案例研究
- 新型建材应用降低造价措施
- 可持续发展下的土地利用与保护路径
- 员工开会的总结怎么写
- 元旦假期学生安全教育管理工作计划
- 全国各省市县统计表-
- 不错!我真的很不错
- 新能源汽车维护PPT完整全套教学课件
- 七年级数学开学第一课课件
- 市场营销学市场营销与市场营销学
- 四年级心理健康上册全册教案
- 石油钻采设备与工具专业标准分类
- GB/T 39725-2020信息安全技术健康医疗数据安全指南
- GB/T 13173-2021表面活性剂洗涤剂试验方法
- FZ/T 73044-2012针织配饰品
- 全套课件:机械基础
评论
0/150
提交评论