免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.4 算法案例重点难点重点:通过案例分析,体会算法思想,熟练算法设计,进一步理解算法的基本思想,发展有条理的思考和表达能力,提高逻辑思维能力。难点:在分析案例的过程中设计规范合理的算法学习要求 1理解剩余定理的内涵2能利用剩余定理解决“韩信点兵孙子问题”【课堂互动】历史背景:韩信是秦末汉初的著名军事家,据说有一次汉高祖刘邦在卫士的簇拥下来到练兵场,刘邦问韩信有什么办法,不要逐个报数,就能知道场上士兵的人数。韩信先令士兵排成3列纵队,结果有2人多余;接着他立刻下令将队形改为5列纵队,这一改,又多出3人;随后他又下令改为7列纵队,这一次又剩下2人无法成整行。韩信看此情形,立刻报告共有士兵2 333人。众人都愣了,不知韩信用什么办法清点出准确人数的。这个故事是否属实,已无从查考,但这个故事却引出一个著名的数学问题,即闻名世界的“孙子问题”。这种神机妙算,最早出现在我国算经十书之一的孙子算经中,原文是:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?答曰:二十三。”所以人们将这种问题的通用解法称为“孙子剩余定理”。【分析】“孙子问题”相当于求关于x,y,z的不定方程组的正整数解。根据题意,m应该满足三个条件:(1)m被3除后余2,即 (2)m被5除后余3,即(3)m被7除后余2,即在自然数中可能存在满足条件的数,首先让m=2开始检验条件,若三个条件中有任何一个不满足,则检验下一个数,即m递增1,如此循环下去,一直到m满足三个条件为止。这种解决问题的方法也称为“穷举法”,这种方法在利用计算机解决问题时非常有效,因为计算机最擅长重复机械的操作。【流程图】NYmm+1结束输出m开始1m2【伪代码】m2While Mod(m,3)2或 Mod(m,5)3或 Mod(m,7)2mm+1End WhilePrint m【思考】输出且且开始结束上述算法只能求出最小的满足条件的数,如果要求出10个满足条件的数,程序要做何修改?你能否用数学上最小公倍数的知识分析出解决该问题的方法吗?可以这样考虑:5和7的公倍数中能被3除余2的最小的公倍数是35;3和7的公倍数中能被5除余3的最小的公倍数是63;3和5的公倍数中能被7除余2的最小的公倍数是30;因此满足条件的其中的一个数就应是35+63+30,为128,若减去3,5,7的最小公倍数105得23,23就是满足题目要求的最小的数。你能画出这种算法的流程图吗?【解】算法流程图如所示.经典范例例1 古今中外,许多人致力于圆周率的研究与计算。我国东汉的数学家刘徽利用“割圆术”计算圆的面积及圆周率。“割圆术”被称为千古绝技,它的原理是用圆内接正多边形的面积去逼近圆的面积。具体计算如下:在单位圆内作正六边形,其面积记为A1,边长为a1,在此基础上作圆内接十二边形,面积记为A2,边长为a2,,一直做下去,记该圆的内接正边形面积为,边长为。由于所考虑的是单位圆,计算出的的值即是圆周率的一个近似值,且越大,与圆周率越接近。你能否设计一个算法,计算圆周率的近似值?思路点拨:画图可知,.【解】算法步骤如下:Read na1For I From 2 To nAasqrtPrint I,A,aEnd For【追踪训练】1. 是一正整数,对两个正整数,若是的倍数,则称模同余,用符号表示.则中,的取值可能为 ( D )A.11 B.22 C.27 D.322.有一堆围棋子,五个五个地数,最后余下2个;七个七个地数,最后余下3个;九个九个地数,最后余下4个.请设计一种算法,求出这堆棋子至少有多少个.【解】 算法如下:m2While Mod(m,5)2或 Mod(m,7)3或 Mod(m,9)4 mm+1End WhilePrint m3.(李白买酒)无事街上走,提壶去买酒,遇店加一倍,见花喝一斗,三遇店和花,喝光壶中酒设计求酒壶中原有多少酒的一个算法并写出伪代码 【解】 算法如下: x0For i from 1 to 3 xx+1 xx/2 End for
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025四川南充市房地产管理局遴选参照管理人员2人备考公基题库附答案解析
- 2025海南三亚口腔医学中心(考核)招聘事业编制及员额制人员76人(第1号)历年真题库附答案解析
- 变压器工程合同
- 工厂工件外包合同
- 旧车置换新车合同
- 培训学校辅导协议书
- 只租赁车牌的协议书
- 垃圾定期清运协议书
- 合伙投标矿山协议书
- 坚瑞沃能合作协议书
- 动物疫病防治员岗前核心能力考核试卷含答案
- 2025广东深圳市盐田区第二批次招聘公共事务辅助员12人笔试考试备考题库及答案解析
- 2025年初中历史学科教师课程标准考试测试题及参考答案
- 2025重庆江城水务招聘15人笔试历年典型考点题库附带答案详解试卷2套
- 企业员工正能量培训课件
- 社会保险会计培训
- 《2025年健康体检服务合同协议》
- 2025河南省农业信贷担保有限责任公司秋季专场招聘28人考试笔试备考试题及答案解析
- 西藏养老护理考试题库大全及答案解析
- 2025年河北省高职单招考试六类职业适应性测试(综合)
- 2025消防宣传月专题培训
评论
0/150
提交评论