全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
-本文为网络收集精选范文、公文、论文、和其他应用文档,如需本文,请下载-导数在函数中的应用的论文本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!【摘 要】新课程利用导数求曲线的切线,判断或论证函数的单调性,函数的极值和最值。导数是分析和解决问题的有效工具。【关键词】导数 函数的切线 单调性 极值和最值导数(导函数的简称)是一个特殊函数,它的引出和定义始终贯穿着函数思想。新课程增加了导数的内容,随着课改的不断深入,导数知识考查的要求逐渐加强,而且导数已经由前几年只是在解决问题中的辅助地位上升为分析和解决问题时的不可缺少的工具。函数是中学数学研究导数的一个重要载体,函数问题涉及高中数学较多的知识点和数学思想方法。近年好多省的高考题中都出现以函数为载体,通过研究其图像性质,来考查学生的创新能力和探究能力的试题。本人结合教学实践,就导数在函数中的应用作个初步探究。有关导数在函数中的应用主要类型有:求函数的切线,判断函数的单调性,求函数的极值和最值,利用函数的单调性证明不等式,这些类型成为近两年最闪亮的热点,是高中数学学习的重点之一,预计也是“新课标”下高考的重点。一、用导数求函数的切线例1.已知曲线y=x3-3x2-1,过点(1,-3)作其切线,求切线方程。分析:根据导数的几何意义求解。解:y = 3x2-6x , 当x=1时y= - 3,即所求切线的斜率为-3.故所求切线的方程为y+3 = -3(x-1),即为:y = -3x.1、方法提升:函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点p(x0, y=f(x0))处的切线的斜率。既就是说,曲线y=f(x)在点p(x0, y=f(x0))处的切线的斜率是f(x0) ,相应的切线方程为y-y0= f(x0)(x-x0)。二、用导数判断函数的单调性例2求函数y=x3-3x2-1的单调区间。分析:求出导数y,令y0或y0得3x2-6x0,解得x0或x2。由y0和f(x)0;(4)确定f(x)的单调区间.若在函数式中含字母系数,往往要分类讨论。三、用导数求函数的极值例3求函数f(x)=(1/3)x3-4x+4的极值解:由 f(x)=x2-4=0,解得x=2或x=2. 当x变化时,y、y的变化情况如下:当x=2时,y有极大值f(-2)=(28/3),当x=2时,y有极小值f(2)=(4/3).3、方法提升:求可导函数极值的步骤是:(1)确定函数定义域,求导数f(x);(2)求f(x)= 0的所有实数根;(3)对每个实数根进行检验,判断在每个根(如x0)的左右侧,导函数f(x)的符号如何变化,如果f(x)的符号由正变负,则f(x0)是极大值;如果f(x)的符号由负变正,则f(x0)是极小值.。注意:如果f(x)= 0的根x = x0的左右侧符号不变,则f(x0)不是极值。 四、用导数求函数的最值 五、证明不等式5、方法提升:利用导数证明不等式是近年高考中出现的一种热点题型。其方法可以归纳为“构造函数,利用导数研究函数最值”。总之,导数作为一种工具,在解决数学问题时使用非常方便,尤其是可以利用导数来解决函数的单调性,极值,最值以及切线问题。在导数的应用过程中,要加强对基础知识的理解,重视数学思想方法的应用,达到优化解题思维,简化解题过程的目的,更在于使学生掌握一种 科学 的语言和工具,进一步加深对函数的深刻理解和直观认识。参考 资料:1、普通高中课程标准实验教科书(北京师范大学出版社)2、高中数学教学参考 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 防食物安全教育课件
- 健康养生知识大挑战答题游戏与答案解析
- 化工工厂操作规范测试题及答案指南
- 电影产业经营管理知识测试题库及答案
- 科学探索班模拟题与答案详解
- 法律法规知识小测验及答案
- 基于实践的弯沉值测试技术研究报告
- 康复悬吊测试试题及答案解析
- 开发版内测试题及答案
- 经济管理干部专业知识测试题库及答案详解
- 新视野大学英语(第四版)读写教程1(思政智慧版) 课件 Unit 4 Social media matters Section C
- 端子压接作业指导书
- 爸爸妈妈的童年课件
- 从“心”出发让爱在教育中绽放优秀获奖科研论文
- 武汉城市简介PPT
- 肥胖患者围术期麻醉管理
- 认识厘米这样教强震球
- 中国脑出血诊治指南
- 流感样病例暴发疫情的调查与处理
- 私募证券投资基金调查问卷(自然人版)
- GB/T 8269-2006柠檬酸
评论
0/150
提交评论