2017年高考新课标Ⅰ卷文数试题解析(精编版)(解析版).doc_第1页
2017年高考新课标Ⅰ卷文数试题解析(精编版)(解析版).doc_第2页
2017年高考新课标Ⅰ卷文数试题解析(精编版)(解析版).doc_第3页
2017年高考新课标Ⅰ卷文数试题解析(精编版)(解析版).doc_第4页
2017年高考新课标Ⅰ卷文数试题解析(精编版)(解析版).doc_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2017年普通高等学校招生全国统一考试文科数学一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1已知集合A=,B=,则AAB=BABCABDAB=R【答案】A【解析】试题分析:由得,所以,选A【考点】集合运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理2为评估一种农作物的种植效果,选了n块地作试验田这n块地的亩产量(单位:kg)分别为x1,x2,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是Ax1,x2,xn的平均数Bx1,x2,xn的标准差Cx1,x2,xn的最大值Dx1,x2,xn的中位数【答案】B【解析】试题分析:评估这种农作物亩产量稳定程度的指标是标准差或方差,故选B.【考点】样本特征数【名师点睛】众数:一组数据出现次数最多的数叫众数,众数反映一组数据的多数水平;中位数:一组数据中间的数(起到分水岭的作用),中位数反映一组数据的中间水平;平均数:反映一组数据的平均水平;方差:反映一组数据偏离平均数的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定标准差是方差的算术平方根,意义在于反映一组数据的离散程度3下列各式的运算结果为纯虚数的是Ai(1+i)2Bi2(1i)C(1+i)2Di(1+i)【答案】C【解析】试题分析:由为纯虚数知选C【考点】复数运算,复数基本概念【名师点睛】本题重点考查复数的基本运算和复数的概念,属于基础题首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.4如图,正方形ABCD内的图形来自中国古代的太极图正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称在正方形内随机取一点,则此点取自黑色部分的概率是A BCD【答案】B【考点】几何概型【名师点睛】对于一个具体问题能否用几何概型的概率公式计算事件的概率,关键在于能否将问题几何化,也可根据实际问题的具体情况,选取合适的参数建立适当的坐标系,在此基础上,将实验的每一结果一一对应于该坐标系中的一点,使得全体结果构成一个可度量的区域;另外,从几何概型的定义可知,在几何概型中,“等可能”一词理解为对应于每个实验结果的点落入某区域内的可能性大小,仅与该区域的度量成正比,而与该区域的位置、形状无关5已知F是双曲线C:的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则APF的面积为ABCD【答案】D【考点】双曲线【名师点睛】本题考查圆锥曲线中双曲线的简单运算,属容易题由双曲线方程得,结合PF与x轴垂直,可得,最后由点A的坐标是(1,3),计算APF的面积6如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是ABCD【答案】A【解析】试题分析:对于B,易知ABMQ,则直线AB平面MNQ;对于C,易知ABMQ,则直线AB平面MNQ;对于D,易知ABNQ,则直线AB平面MNQ故排除B,C,D,选A【考点】空间位置关系判断【名师点睛】本题主要考查线面平行的判定定理以及空间想象能力,属容易题证明线面平行的常用方法:利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面7设x,y满足约束条件则z=x+y的最大值为A0B1C2D3【答案】D【考点】简单的线性规划【名师点睛】学/科网本题主要考查线性规划问题,首先由不等式组作出相应的可行域,并明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数的最值取法或值域范围8函数的部分图像大致为ABCD【答案】C【解析】试题分析:由题意知,函数为奇函数,故排除B;当时,故排除D;当时,故排除A故选C【考点】函数图像【名师点睛】函数图像问题首先关注定义域,从图像的对称性,分析函数的奇偶性,根据函数的奇偶性排除部分选择项,从图像的最高点、最低点,分析函数的最值、极值,利用特值检验,较难的需要研究单调性、极值等,从图像的走向趋势,分析函数的单调性、周期性等9已知函数,则A在(0,2)单调递增B在(0,2)单调递减Cy=的图像关于直线x=1对称Dy=的图像关于点(1,0)对称【答案】C【考点】函数性质【名师点睛】如果函数,满足,恒有,那么函数的图像有对称轴;如果函数,满足,恒有,那么函数的图像有对称中心10下面程序框图是为了求出满足的最小偶数n,那么在和两个空白框中,可以分别填入AA1000和n=n+1BA1000和n=n+2CA1000和n=n+1DA1000和n=n+2【答案】D【解析】试题分析:由题意,因为,且框图中在“否”时输出,所以判定框内不能输入,故填,又要求为偶数且初始值为0,所以矩形框内填,故选D.【考点】程序框图【名师点睛】解决此类问题的关键是读懂程序框图,明确顺序结构、条件结构、循环结构的真正含义.本题巧妙地设置了两个空格需要填写,所以需要抓住循环的重点,偶数该如何增量,判断框内如何进行判断可以根据选项排除.11ABC的内角A,B,C的对边分别为a,b,c已知,a=2,c=,则C=ABCD【答案】B【解析】试题分析:由题意得,即,所以由正弦定理得,即,因为ca,所以CA,所以,故选B【考点】解三角形【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到12设A,B是椭圆C:长轴的两个端点,若C上存在点M满足AMB=120,则m的取值范围是ABCD【答案】A【考点】椭圆【名师点睛】本题设置的是一道以椭圆知识为背景的求参数范围的问题解答问题的关键是利用条件确定的关系,求解时充分借助题设条件转化为,这是简化本题求解过程的一个重要措施,同时本题需要对方程中的焦点位置进行逐一讨论二、填空题:本题共4小题,每小题5分,共20分13已知向量a=(1,2),b=(m,1)若向量a+b与a垂直,则m=_【答案】7【解析】试题分析:由题得,因为,所以,解得【考点】平面向量的坐标运算,垂直向量【名师点睛】如果a(x1,y1),b(x2,y2)(b0),则ab的充要条件是x1x2+y1y2014曲线在点(1,2)处的切线方程为_【答案】【解析】试题分析:设,则,所以,所以曲线在点处的切线方程为,即【考点】导数几何意义【名师点睛】求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出斜率,其求法为:设是曲线上的一点,则以为切点的切线方程是若曲线在点处的切线平行于轴(即导数不存在)时,由切线定义知,切线方程为15已知,tan =2,则=_【答案】【解析】试题分析:由得,又,所以,因为,所以,因为,所以.【考点】三角函数求值【名师点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异一般可以适当变换已知式,求得另外函数式的值,以备应用;变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角16已知三棱锥SABC的所有顶点都在球O的球面上,SC是球O的直径若平面SCA平面SCB,SA=AC,SB=BC,三棱锥SABC的体积为9,则球O的表面积为_【答案】【考点】三棱锥的外接球【名师点睛】本题考查了球与几何体的问题,是高考中的重点问题,要有一定的空间想象能力,这样才能找准关系,得到结果,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的各顶点的距离相等,然后用同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球三、解答题:共70分解答应写出文字说明、证明过程或演算步骤第1721题为必考题,每个试题考生都必须作答第22、23题为选考题,考生根据要求作答(一)必考题:共60分17(12分)记Sn为等比数列的前n项和,已知S2=2,S3=6(1)求的通项公式;(2)求Sn,并判断Sn+1,Sn,Sn+2是否成等差数列【答案】(1);(2),证明见解析【解析】试题分析:(1)由等比数列通项公式解得,即可求解;(2)利用等差中项证明Sn+1,Sn,Sn+2成等差数列【考点】等比数列【名师点睛】等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用但在应用性质时要注意性质的前提条件,有时需要进行适当变形在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法18(12分)如图,在四棱锥PABCD中,AB/CD,且(1)证明:平面PAB平面PAD;(2)若PA=PD=AB=DC,且四棱锥PABCD的体积为,求该四棱锥的侧面积【答案】(1)证明见解析;(2)【解析】试题分析:(1)由,得平面即可证得结果;(2)设,则四棱锥的体积,解得,可得所求侧面积试题解析:(1)由已知,得,由于,故,从而平面又平面,所以平面平面(2)在平面内作,垂足为由(1)知,平面,故,可得平面设,则由已知可得,故四棱锥的体积由题设得,故从而,可得四棱锥的侧面积为【考点】空间位置关系证明,空间几何体体积、侧(表)面积计算【名师点睛】证明面面垂直,先由线线垂直证明线面垂直,再由线面垂直证明面面垂直;计算点面距离时,如直接求不方便,应首先想到转化,如平行转化、对称转化、比例转化等,找到方便求值时再计算,可以减少运算量,提高准确度,求点面距离有时能直接作出就直接求出,不方便直接求出的看成三棱锥的高,利用等体积法求出19(12分)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm)下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序12345678零件尺寸9.9510.129.969.9610.019.929.9810.04抽取次序910111213141516零件尺寸10.269.9110.1310.029.2210.0410.059.95经计算得,其中为抽取的第个零件的尺寸,(1)求的相关系数,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小)(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查()从这一天抽检的结果看,是否需对当天的生产过程进行检查?()在之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差(精确到0.01)附:样本的相关系数,【答案】(1),可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小;(2)()需对当天的生产过程进行检查;()均值与标准差的估计值分别为10.02,0.09【解析】(2)(i)由于,由样本数据可以看出抽取的第13个零件的尺寸在以外,因此需对当天的生产过程进行检查(ii)剔除离群值,即第13个数据,剩下数据的平均数为,这条生产线当天生产的零件尺寸的均值的估计值为10.02,剔除第13个数据,剩下数据的样本方差为,这条生产线当天生产的零件尺寸的标准差的估计值为【考点】相关系数,方差、均值的计算【名师点睛】解答新颖的数学题时,一是通过转化,化“新”为“旧”;二是通过深入分析,多方联想,以“旧”攻“新”;三是创造性地运用数学思想方法,以“新”制“新”,应特别关注创新题型的切入点和生长点20(12分)设A,B为曲线C:y=上两点,A与B的横坐标之和为4(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AMBM,求直线AB的方程【答案】(1)1;(2)(2)由,得设M(x3,y3),由题设知,解得,于是M(2,1)设直线AB的方程为,故线段AB的中点为N(2,2+m),|MN|=|m+1|将代入得当,即时,从而由题设知,即,解得所以直线AB的方程为【考点】直线与圆锥曲线的位置关系【名师点睛】本题主要考查直线与圆锥曲线的位置关系,主要利用根与系数的关系:因为直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用根与系数的关系及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用根与系数的关系直接解决,但应注意不要忽视判别式的作用21(12分)已知函数=ex(exa)a2x(1)讨论的单调性;(2)若,求a的取值范围【答案】(1)当时,在单调递增;当时,在单调递减,在单调递增;当时,在单调递减,在单调递增;(2)【解析】试题分析:(1)分,分别讨论函数的单调性;(2)分,分别解,从而确定a的取值范围试题解析:(1)函数的定义域为,若,则,在单调递增若,则由得当时,;当时,故在单调递减,在单调递增若,则由得当时,;当时,故在单调递减,在单调递增【考点】导数应用【名师点睛】本题主要考查导数两大方面的应用:(1)函数单调性的讨论:运用导数知识来讨论函数单调性时,首先考虑函数的定义域,再求出,由的正负,得出函数的单调区间;(2)函数的最值(极值)的求法:由确认的单调区间,结合极值点的定义及自变量的取值范围,得出函数的极值或最值(二)选考题:共10分请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分22选修44:坐标系与参数方程(10分)在直角坐标系xOy

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论