


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数据管理与数据治理的异同点分析当我们谈数据资产管理时,我们究竟在谈什么?就目前而言,我们谈论得最多的非数据管理和数据治理这两个概念莫属。但是对于这两个概念,两者的准确定义是什么,具体区别又是什么,仍是困扰着许多人的关键问题。数据管理包含数据治理“治理是整体数据管理的一部分”这个概念目前已经得到了业界的广泛认同。数据管理包含多个不同的领域,其中一个最显著的领域就是数据治理。CMMi协会颁布的数据管理成熟度模型(DMM)使这个概念具体化。DMM模型中包括六个有效数据管理分类,而其中一个就是数据治理。数据管理协会(DAMA)在数据管理知识体系(DMBOK)中也认为,数据治理是数据管理的一部分。在企业信息管理(EIM)这个定义上,EIM是“在组织和技术的边界上结构化、描述、治理信息资产的一个综合学科”。不仅强调了数据/信息管理和治理上的紧密关系,也重申了数据管理包含治理这个观点。治理与管理的区别治理相对容易界定,它是用来明确相关角色、工作责任和工作流程的,确保数据资产能长期有序地、可持续地得到管理。而数据管理则是一个更为广泛的定义,它与任何时间采集和应用数据的可重复流程的方方面面都紧密相关。例如,简单地建立和规划一个数据仓库,这是数据管理层面的工作。定义谁以及如何访问这个数据仓库,并且实施各种各样针对元数据和资源库管理工作的标准,这是治理层面的工作。数据管理广泛的定义有一部分是特别针对数据治理的。一个更广泛的定义是,在数据管理过程中要保证一个组织已经将数据转换成有用信息,这项工作所需要的流程和工具就是数据治理的工作。信息与数据的区别所有的信息都是数据,但并不是所有的数据都是信息。信息是那些容易应用于业务流程并产生特定价值的数据。要成为信息,数据通常必须经历一个严格的治理流程,它使有用的数据从无用数据中分离出来,以及采取若干关键措施增加有用数据的可信度,并将有用数据作为信息使用。数据的特殊点在于创造和使用信息。数据治理主要围绕对象角色与正式的数据治理流程相关的角色是有限的。这些角色通常包括高层的管理者,他们优化数据治理规划并使资金筹集变得更为容易。这些角度也包括一个治理委员会,由个别高层管理者以及针对治理特定业务和必要流程而赋予相应职责的跨业务部门的人组成。角色也包括数据管理员,确保治理活动的持续开展以及帮忙企业实现业务目标。此外,还有部分“平民”管理员,他们虽然不会明确被指定为数据管理员,但他们仍在各自业务领域里的治理流程中扮演活跃的角色。有效的治理不仅需要IT的介入,这是人们的普遍共识。尤其当业务必须更主动地参与到治理方式和数据管理其他层面(例如自助数据分析)的时候,目的是要从这些工作参与中获益。在更多的案例中,特定领域的治理可以直接应用于业务。这就是为什么治理仅需要IT的介入是一个过时且应该摈弃的观点。数据治理主要围绕对象领域数据治理包含许多不同方面的领域:元数据:元数据要求数据元素和术语的一致性定义,它们通常聚集于业务词汇表上。业务词汇表:对于企业而言,建立统一的业务术语非常关键,如果这些术语和上下文不能横跨整个企业的范畴,那么它将会在不同的业务部门中出现不同的表述。生命周期管理:数据保存的时间跨度、数据保存的位置,以及数据如何使用都会随着时间而产生变化,某些生命周期管理还会受到法律法规的影响。数据质量:数据质量的具体措施包括数据详细检查的流程,目的是让业务部门信任这些数据。数据质量是非常重要的,有人认为它不同于治理,它极大提升了治理的水平。参考数据管理:参考数据提供数据的上下文,尤其是它结合元数据一起考虑的情况下。由于参考数据变更的频率较低,参考数据的治理经常会被忽视。虽然上述提及的是数据治理在数据管理中所负责的特定领域,但一个至关重要的问题在于,所有组织里的数据必须持续坚持数据治理的原则。数据建模数据建模是依赖于数据治理的另一个数据管理中的关键领域,它结合了数据管理与数据治理两者进行协调工作。可以说,为了将数据治理扩展到整个组织,利用一个规范化的数据建模有利于将数据治理工作扩展到其他业务部门。遵从一致性的数据建模,令数据标准变得有价值(特别是应用于大数据)。一个确保数据治理贯穿整个企业的最高效手段,就是利用数据建模技术直接关联不同的数据治理领域,例如数据血缘关系以及数据质量。当需要合并非结构化数据时,数据建模将会更有价值。此外,数据建模加强了治理的结构和形式。关键的不同点数据管理其他方面的案例在DMM中有五个类型,包括数据管理战略、数据质量、数据操作(生命周期管理)、平台与架构(例如集成和架构标准),以及支持流程(聚集于其他因素之中的流程和风险管理)。数据治理和数据管理非常接近是有事实支撑的,数据质量经常被视为与数据治理相结合,甚至被认为是数据治理的产物之一。也许,情景化这两个领域的最好办
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年篮球级裁判试题及答案
- 2025年送餐人员考试题目及答案
- 2025年建机电考试题纲及答案
- 2025年中医学基础面试题及答案
- 村委赔偿协议书
- 2025年外贸人员笔试题库及答案
- 村级代理协议书
- 林地权属协议书
- 果树代养协议书
- 2025年医师人文医学试题及答案
- 2024-2025学年七年级生物上册 第一单元 单元测试卷(冀少版)
- 沪科版(2024)八年级全一册物理第一章 运动的世界 学情评估测试卷(含答案解析)
- 【小升初】2023-2024学年全国升学分班考数学真题模拟试题2套(含解析)
- 游客接待服务中心项目施工进度计划及保证措施
- 2024-2030年中国液体化工品仓储市场供需格局及未来发展趋势报告
- 重庆发展投资公司及所属子企业招聘笔试真题2022
- 《土木工程测量 第2版》 课件 第3章 角度测量
- 间歇充气加压用于静脉血栓栓塞症预防的中国专家共识(2022年版)
- 机器人机械结构设计教案
- 邻近铁路营业线施工安全监测技术规程 (TB 10314-2021)
- 《线束设计规范》课件
评论
0/150
提交评论