张璞扬力学PPT课件.ppt_第1页
张璞扬力学PPT课件.ppt_第2页
张璞扬力学PPT课件.ppt_第3页
张璞扬力学PPT课件.ppt_第4页
张璞扬力学PPT课件.ppt_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 笫五章角动量守恒 1 角动量和力矩2 质点系角动量定理3 质心系的角动量定理4 质点在有心力场中的运动5 对称性与守恒定律 目录 2 角动量与力矩 角动量是除动量和能量之外的另一个守恒量 它不但能描述经典力学中的运动状态 在近代物理理论中在表征状态方面也是不可缺少的一个基本量 3 讨论 角动量是相对于给定的参考点定义的 且参考点在所选的参考系中必须是固定点 参考点不同 角动量亦不同 如园锥摆 一般把参考点取在坐标原点 这样 才有 园锥摆的角动量 4 二 力矩 作用力F 其作用点的位矢为r 它对o点的力矩被定义为 方向由右手定则确定 大小 在直角坐标系中 其分量表示 5 三 质点的角动量定理 角动量和力矩的物理意义体现在两者所遵从的物理规律上 而 6 质点的角动量定理 即 7 四 质点的角动量守恒定理 当 8 例5 1一小球沿竖直的光滑圆轨道由静止开始下滑 求小球在B点时对环心的角动量和角速度 解 力矩分析 用角动量定理 又 B A R O mg 9 例题5 2摆长为l的锥摆作匀速圆周运动 摆线与铅垂线成角 求摆球速率 解 如图 在圆锥摆的运动过程中 摆球相对支点o的角动量为 L是一个可以绕z轴旋转的矢量 将其分解两个分量 其大小分别为 显然 不变 而随时间改变 如图 有 o 10 另一方面 作用于摆球的外力有张力和重力 张力对支点o无力矩 而重力矩的方向与圆周半径垂直 其大小为 在式 两边都除以 并取极限 利用角动量定理及式 得 而 由此解得 11 质点系角动量定理 对t求导 利用质点角动量定理 则得 12 体系角动量定理的积分形式 体系对给定点角动量的增量等于外力对该点的总冲量矩 二 质点系角动量守恒 质点系角动量定理指出 只有外力矩才对体系的角动量变化有贡献 内力矩对体系角动量变化无贡献 但对角动量在体系内的分配是有作用的 13 3 角动量守恒定律是一个独立的规律 并不包含在动量守恒定律或能量守恒定律中 2 角动量守恒定律是矢量式 它有三个分量 各分量可以分别守恒 a 若 则 b 若 则 c 若 则 关于总外力矩M 0 有三种不同情况 a 对于孤立系统 体系不受外力作用 b 所有外力都通过定点 c 每个外力的力矩不为零 但总外力矩M 0 讨论 14 例题5 3卢瑟福粒子散射实验与有核模型 已知粒子的质量为m 电荷为2e 从远处以速度射向一质量为 电荷为Ze的重原子核 重核与速度矢量垂直距离为d 称为瞄准距离 设 原子核可看作不动 试求粒子与重核的最近距离 解 如图 当粒子接近重核时 在重核静电斥力作用下速度随时间改变 在A点到达与重核最接近的距离处 因粒子所受的静电力方向始终通过重核 故粒子对力心0的角动量守恒 即 15 又由于 并利用瞄准距离d的性质 得到 由上两式即得 所以 舍去负根后 得 代入实验数据可算得 与后来原子核半径的测量值在数量级上相符 16 质心系的角动量定理 在处理问题时 如果采用质心参考系 并取质心为参考点时 质点系相对于质心的角动量随时间的变化规律将如何表述呢 一 质心系中的角动量定理 质心系若为非惯性系 则加上惯性力的力矩 角动量定理仍适用 设为质心系中体系对质心的总角动量 为外力对质心力矩之和 为惯性力对质心的力矩之和 则 由于质心平动系中 作用在各质点的惯性力与质量成正比 方向与质心加速度相反 故对质心的力矩为 17 即质点系相对质心的角动量的时间变化率等于外力相对质心的外力矩总和 注意 质心系角动量定理虽与质点或质点系的角动量定理具有完全相同的形式 但后者总被强调在惯性系中成立 而质心即使有加速度 质心系为非惯性系 如在重力场中 质心角动量定理仍成立 其中为质心系中质心位矢 它必为零 故 18 二 质心系的角动量守恒 当外力相对质心的总力矩为零时 体系相对质心的角动量为恒量 运动员在跳水过程中 若忽略空气阻力 所受到的唯一的外力是重力 它在质心系中的总力矩恒为零 因此运动员绕质心的角动量守恒 而 代入上式得 19 上式表示体系的角动量等于质心角动量与体系相对于质心角动量之和 20 例题5 4质量为的两个质点的位矢和速度分别为和 试求 每个质点相对于两质点质心的动量 两质点相对于它们的质心的角动量 解 对于由两个质点构成的质点系 引入相对速度u 考虑到质心系是零动量参考系 即 可得 由此可得 每个质点相对于质心的动量分别为 22 两质点的约化质量 利用质心表达式 每个质点相对于质心的位矢分别为 故两个质点系统相对于其质心的角动量为 23 四两体问题对于质量可以比拟的孤立两体问题 总可以把其中一个物体看作固定力心 只要另一物体的质量用约化质量代替 这就是说 无固定力心的两体问题等效于一质量为的质点在固定力心的有心力作用下的运动 也就把两体问题化成单体问题 即其运动规律满足 其中是从指向的矢量方向的单位矢量 24 质点在有心力场中的运动 一 有心力 所谓有心力 就是方向始终指向 或背向 固定中心的力 该固定中心称为力心 在许多情况下 有心力的大小仅与考察点至力心的距离有关 即 有心力存在的空间称为有心力场 如万有引力场 库仑力场 分子力场 25 二 有心力场质点运动的一般特征 在有心力场中 质点的运动方程为 其特征 运动必定在一个平面上 当质点的初速度给定后 质点只能在初速度与初始矢径所构成的平面内运动 往往用平面极坐标描述运动 取力心为原点 运动方程则为 26 有心力对原点的力矩为零 故质点对原点的角动量守恒 两个守恒量 有心力为保守力 质点的机械能守恒 对 式两边乘r 再对时间积分得 27 有效势能与轨道特征 设有两个质量分别为m M的质点 则引力势能为 则有效势能为 28 当角动量L取某一确定值 利用势能曲线 可以讨论质点运动矢径大小的变化范围 此范围取决于质点的总能量E 质点将在有心力场中作不同类型的轨道运动 根据有效势能 得到如图所示的有效势能曲线 29 三 开普勒三定律和万有引力定律 人们对金 木 水 火 土五颗行星的运动有过长期的观察 特别是丹麦天文学家第谷 TyehoBrahe 1546 1601 进行了连续20年的仔细观测和记录 他的学生开普勒 KeplerJohamnes 1571 1630 则花了大约20年的时间分析这些数据 总结出三条行星运动规律 30 开普勒面积定律的证明 用表示从0到速度矢量v的垂直距离 则有 如图 行星对太阳M的角动量大小为 其中是时间内行星与太阳间的联线所扫过的面积 故 31 由于万有引力为有心力 它对力心的力矩总是等于零 故角动量守恒 亦即 这就证明了掠面速度不变 也就是开普勒笫二定律 实际上 此定律与角动量守恒定律等价 两焦点在长轴上位置坐标为 32 设行星远日点和近日点的距离分别为 对应的速度为 由机械能守恒 有 由角动量守恒 有 33 考虑到 最后求得 这表明太阳位置坐标为 c 这正是几何上的椭圆焦点位置 这一结果与天文观测资料的一致 证认了牛顿力学理论的正确性 最为重要的是一举同时证认了引力二次方反比律和运动定律两者的正确性 解得 根据向心力公式和长轴端点弧元的曲率半径 有 34 2 万有引力定律 开普勒行星运动定律蕴涵着更为简洁 更为普遍的万有引力定律 其中的奥秘直到牛顿才被破译出来 根据开普勒轨道定律 为简便起见 可把行星轨道看作圆形 这样 行星应作匀速圆周运动 因 而 故 取比例系数为k 则得 k取决于太阳的性质 35 牛顿认为这种引力是万有的 普适的 统一的 即所有物体之间都存在这种引力 称之为万有引力 对地球和月球之间的吸引力应有 根据牛顿第三定律 由以上两式得 其比值应是一个与地球和月球都无关的普适常数 设其为G 有 36 于是 地 月之间的引力为 普适的万有引力定律则可描述为 G称为万有引力常数 因为引力太弱 又不能屏蔽对它的干扰 实验很难做 故万有引力常数是目前测量最不精确的一个基本物理常量 其量纲为 37 五 对称性与守恒定律 物理学的规律是有层次的 层次越深 则规律越基本 越简单 其适用性也越广泛 但也越不容易被揭示出来 由于变换或操作方式的不同 可以有各种不同的对称性 最常见的对称操作是时空操作 相应的对称性称为时空对称性 空间操作有平移 转动 镜象反射 空间反演等 时间操作有时间平移 时间反演等 38 二对称性与守恒定律 内特尔定理 如果运动规律在某一不明显依赖于时间的变换下具有不变性 必相应存在一个守恒定律 对称性原理与守恒定律是跨越物理学各个领域的普遍法则 因此在未涉及一些具体定律之前 往往有可能根据对称性原理与守恒定律作出一些定性的判断 得到一些有用的信息 物理规律的对称性又称为不变性 invariannce 39 下面讨论时空对称性与动量守恒定律 为简单起见 假设一个体系由两个相互作用着的粒子组成 它们只限于在具有平移对称性的x轴上运动 如图所示 设两粒子的坐标分别为 体系的势能为 当体系发生一平移时 两粒子的坐标分别为 但两粒子间的距离未变 即 40 空间的平移对称性意味着势能与无关 即空间平移操作

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论