免费预览已结束,剩余9页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题48 排列与组合(1)理解排列、组合的概念.(2)能利用计数原理推导排列数公式、组合数公式.(3)能解决简单的实际问题.1排列(1)排列的定义一般地,从n个不同元素中取出个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数、排列数公式从n个不同元素中取出个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用符号表示.一般地,求排列数可以按依次填m个空位来考虑:假设有排好顺序的m个空位,从n个元素中任取m个去填空,一个空位填1个元素,每一种填法就对应一个排列,而要完成“这件事”可以分为m个步骤来实现.根据分步乘法计数原理,全部填满m个空位共有种填法.这样,我们就得到公式,其中,且.这个公式叫做排列数公式.n个不同元素全部取出的一个排列,叫做n个元素的一个全排列,这时公式中,即有,就是说,n个不同元素全部取出的排列数,等于正整数1到n的连乘积.正整数1到n的连乘积,叫做n的阶乘,用表示.所以n个不同元素的全排列数公式可以写成.另外,我们规定1.于是排列数公式写成阶乘的形式为,其中,且.注意:排列与排列数是两个不同的概念,一个排列是指“按照一定的顺序排成一列”,它是具体的一件事,排列数是指“从n个不同元素中取出个元素的所有不同排列的个数”,它是一个数.2组合(1)组合的定义一般地,从n个不同元素中取出个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数、组合数公式从n个不同元素中取出个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号表示.,其中,且.这个公式叫做组合数公式.因为,所以组合数公式还可以写成,其中,且.另外,我们规定.(3)组合数的性质性质1:.性质1表明从n个不同元素中取出m个元素的组合,与剩下的个元素的组合是一一对应关系.性质2:.性质2表明从个不同元素中任取m个元素的组合,可以分为两类:第1类,取出的m个元素中不含某个元素a的组合,只需在除去元素a的其余n个元素中任取m个即可,有个组合;第2类,取出的m个元素中含有某个元素a的组合,只需在除去a的其余n个元素中任取个后再取出元素a即可,有个组合.考向一 排列数公式和组合数公式的应用这个公式体现了排列数公式和组合数公式的联系,也可以用这个关系去加强对公式的记忆.每个公式都有相应的连乘形式和阶乘形式,连乘形式多用于数字计算,阶乘形式多用于对含有字母的排列数或者组合数进行变形或证明.典例1 求下列方程中的值.(1).(2).,原方程的解是.【名师点睛】在解与排列数有关的方程或不等式时,应先求出未知数的取值范围,再利用排列数公式化简方程或不等式,最后得出问题的解. 1(1)求的值;(2)设m,nn*,nm,求证:(m+1)+(m+2)+(m+3)+n+(n+1)=(m+1).考向二 排列问题的求解解决排列问题的主要方法有: (1)“在”与“不在”的有限制条件的排列问题,既可以从元素入手,也可以从位置入手,原则是谁“特殊”谁优先.不管是从元素考虑还是从位置考虑,都要贯彻到底,不能既考虑元素又考虑位置. (2)解决相邻问题的方法是“捆绑法”,即把相邻元素看作一个整体和其他元素一起排列,同时要注意捆绑元素的内部排列. (3)解决不相邻问题的方法是“插空法”,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中. (4)对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列. (5)若某些问题从正面考虑比较复杂,可从其反面入手,即采用“间接法”.典例2 室内体育课上王老师为了丰富课堂内容,调动同学们的积极性,他把第四排的8个同学请出座位并且编号为1,2,3,4,5,6,7,8.经过观察这8个同学的身体特征,王老师决定,按照1,2号相邻,3,4号相邻,5,6号相邻,而7号与8号不相邻的要求站成一排做一种游戏,有_种排法.(用数字作答)【答案】5762有5盆各不相同的菊花,其中黄菊花2盆、白菊花2盆、红菊花1盆,现把它们摆放成一排,要求2盆黄菊花必须相邻,2盆白菊花不能相邻,则这5盆花的不同摆放种数是a12 b 24c36 d48考向三 组合问题的求解组合问题的限制条件主要体现在取出的元素中“含”或“不含”某些元素,在解答时可用直接法,也可用间接法.用直接法求解时,要注意合理地分类或分步;用间接法求解时,要注意题目中“至少”“至多”等关键词的含义,做到不重不漏. 典例3 某学校为了迎接市春季运动会,从5名男生和4名女生组成的田径运动队中选出4人参加比赛,要求男、女生都有,则男生甲与女生乙至少有1人入选的方法种数为a85b86c91d90【答案】b入选的方法种数为12034=86. 3在30瓶饮料中,有3瓶已过了保质期.从这30瓶饮料中任取2瓶,则至少取到1瓶已过保质期饮料的概率为_.(结果用最简分数表示)考向四 排列与组合的综合应用先选后排法是解答排列、组合应用问题的根本方法,利用先选后排法解答问题只需要用三步即可完成. 第一步:选元素,即选出符合条件的元素; 第二步:进行排列,即把选出的元素按要求进行排列; 第三步:计算总数,即根据分步乘法计数原理、分类加法计数原理计算方法总数. 典例4 有甲、乙、丙3项任务,任务甲需要2人承担,任务乙、丙各需要1人承担,从10人中选派4人承担这3项任务,不同的选法共有_种(用数字作答).【答案】25204从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为a300b216c180d1621a b c d2某微信群中甲、乙、丙、丁、戊五名成员同时抢4个红包,每人最多抢一个,且红包被全部抢光,4个红包中有两个2元,两个3元(红包中金额相同视为相同的红包),则甲、乙两人都抢到红包的情况有a35种b24种c18种d9种3某校为了提倡素质教育,丰富学生们的课外生活,分别成立绘画、象棋和篮球兴趣小组,现有甲、乙、丙、丁四名学生报名参加,每人仅参加一个兴趣小组,每个兴趣小组至少有一人报名,则不同报名方法有a12种b24种c36种d72种4某节假日,校办公室随机安排从一号至六号由六位领导参加的值班每一位领导值班一天,则校长甲与校长乙不相邻且主任丙与主任丁也不相邻的概率为a b c d5 4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为a bc d6现有2个男生,3个女生和1个老师共6人站成一排照相,若两端站男生,3个女生中有且仅有2人相邻,则不同的站法种数是a12 b24 c36 d487现有8个人排成一排照相,其中甲、乙、丙3人不能相邻的排法有a种b(-)种c种d(-)种8某校从8名教师中选派4名同时去4个边远地区支教(每个地区1名教师),其中甲和乙不能都去,甲和丙只能都去或都不去,则不同的选派方案有a900种b600种c300种d150种9为了扶助乡村教育,某教育机构派出5名优秀教师志愿者去三所村级小学进行支教,每所小学至少派一名教师志愿者,则不同的分配方法有a100种b120种c150种d160种10在二项式(+)n的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理数都互不相邻的概率为a b c d11在某足球赛现场,从两队的球迷中各选三名,排成一排照相,要求同一队的球迷不能相邻,则不同的排法种数为.(用数字作答)12在“心连心”活动中,5名党员被分配到甲、乙、丙三个村子进行入户走访,每个村子至少安排1名党员参加,且a,b两名党员必须在同一个村子,则不同分配方法的种数为.13给四面体abcd的六条棱分别涂上红,黄,蓝,绿四种颜色中的一种,使得有公共顶点的棱所涂的颜色互不相同,则不同的涂色方法种数共有.14现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为 .15某房间并排摆有六件不同的工艺品,要求甲、乙两件工艺品必须摆放在两端,丙、丁两件工艺品必须相邻,则不同的摆放方法有种(用数字作答).16从a,b,c,d,e五名歌手中任选三人出席某义演活动,当三名歌手中有a和b时,a需排在b的前面出场(不一定相邻),则不同的出场方法有种.1(2017新课标ii理)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有a12种b18种c24种d36种2(2016高考四川理)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为a24 b48 c60 d723(2017浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有_种不同的选法(用数字作答)4(2017天津理)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有_个(用数字作答)变式拓展2【答案】b【解析】2盆黄菊花捆绑作为一个元素与一盆红菊花排列,2盆白菊花采用插空法,所以这5盆花的不同摆放共有aaa24种3【答案】【解析】所取的2瓶都是不过保质期饮料的概率为,则至少取到1瓶已过保质期饮料的概率为.4【答案】c根据分类加法计数原理可知,满足题意的四位数共有72108180个.故选c.考点冲关1【答案】d【解析】,原式=.2【答案】c【解析】若甲、乙抢的是一个2元和一个3元的红包,剩下2个红包,被剩下3名成员中的2名抢走,有=12(种);若甲、乙抢的是两个2元或两个3元的红包,剩下两个红包,被剩下的3名成员中的2名抢走,有=6(种).根据分类加法计数原理可得,甲、乙两人都抢到红包的情况共有12+6=18(种).3【答案】c【解析】由题意可知,从4人中任选2人作为一个整体,共有=6(种),再把这个整体与其他2人进行全排列,对应3个活动小组,有=6(种)情况,所以共有66=36(种)不同的报名方法.4【答案】a5【答案】d 解析】由已知,4位同学各自在周六、周日两天中任选一天参加公益活动共有种不同的结果,而周六、周日都有同学参加公益活动有两类不同的情况:(1)一天一人,另一天三人,有种不同的结果;(2)周六、周日各2人,有种不同的结果,故周六、周日都有同学参加公益活动有种不同的结果,所以周六、周日都有同学参加公益活动的概率为,选d6【答案】b【解析】第一步,2个男生站两端,有种站法;第二步,3个女生站中间,有种站法;第三步,老师站正中间女生的左边或右边,有种站法.由分步乘法计数原理,得共有=24(种)站法.7【答案】b【解析】在8个人全排列的方法数中减去甲、乙、丙全相邻的方法数,就得到甲、乙、丙3人不相邻的方法数,即-,故选b.8【答案】b【解析】依题意,就甲是否去支教进行分类计数:第一类,甲去支教,则乙不去支教,且丙也去支教,则满足题意的选派方案有=240(种);第二类,甲不去支教,且丙也不去支教,则满足题意的选派方案有=360(种).因此,满足题意的选派方案共有240+360=600(种).9【答案】c【解析】分组有两类:2,2,1;3,1,1,共有+=15+10=25(种)不同的分法,再分到三所小学去,共有=6(种)不同的分法,所以不同的分配方法有256=150(种).故选c.10【答案】dp=.11【答案】72【解析】由于要求同一队的球迷不能相邻,故可利用插空法求出不同的排法种数.可分两步:第一步,同一队的3名球迷不同的排法有=6(种);第二步,由于要求同一队的球迷不能相邻,所以另一队的3名球迷必须插入首、尾中的任一个空以及中间的两个空中,不同的排法有=12(种),由分步乘法计数原理,可得不同的排法种数为612=72.12【答案】36【解析】把a,b两名党员看作一个整体,则5个人可分为4个部分.把4个部分再分为3个部分,共有种方法;再把这3个部分分配到三个村子,有种不同的方法;根据分步乘法计数原理,得不同分配方法种数为=36.13【答案】96【解析】由题意知,第一步涂da有四种方法;第二步涂db有三种方法;第三步涂dc有两种方法;第四步涂ab,若ab与dc相同,则一种涂法,第五步可分两种情况,若bc与ad相同,最后一步涂ac有两种涂法,若bc与ad不同,最后一步涂ac有一种涂法.若第四步涂ab,ab与cd不同,则ab涂第四种颜色,此时bc,ac只有一种涂法.综上,总的涂法种数是4321(2+1)+11=96.14【答案】472如果同色,则先从4张红色中选取1张,再从其余三种颜色中任选一种,最后从该种颜色的卡片中选取2张即可,不同的取法有=436=72(种).如果不同色,则先从4张红色中选取1张,再从其余三种颜色中任选两种,最后从每种颜色中选取1张,不同的取法有=4344=192(种).由分类加法计数原理可得,不同的选取方法共有208+72+192=472(种).15【答案】24【解析】甲、乙两件工艺品的摆放方法有种,丙、丁与剩余的两件工艺品的摆放方法有种,由分步乘法计数原理可知,不同的摆放方法有=24种.16【答案】51【解析】应分没有a和b、只有a或b中的一个、a和b均有这三种情况进行讨论.第一类, 这三名歌手中没有a和b,由其他歌手出席该义演活动,共有种情况;第二类,只有a或b中的一个出席该义演活动,需从c,d,e中选两人,共有种情况;第三类, a,b均出席该义演活动,需再从c,d,e中选一人,因为a在b前,共有种情况.由分类加法计数原理得不同的出场方法有+=51种.直通高考1【答案】d【解析】由题意可得,一人完成两项工作,其余两
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年重庆市甘孜藏族自治州单招职业适应性测试必刷测试卷及答案1套
- 2026年曲阜远东职业技术学院单招职业倾向性测试必刷测试卷新版
- 2026年惠州卫生职业技术学院单招职业技能测试必刷测试卷附答案
- 2026年西宁城市职业技术学院单招职业倾向性测试必刷测试卷及答案1套
- 2026年哈尔滨铁道职业技术学院单招职业适应性测试题库新版
- 2026年苏州经贸职业技术学院单招职业技能考试必刷测试卷附答案
- 2026年山西警官职业学院单招综合素质考试必刷测试卷附答案
- 2026年苏州工业园区职业技术学院单招职业适应性测试必刷测试卷附答案
- 2026年吉林职业技术学院单招综合素质考试题库新版
- 2026年朝阳师范高等专科学校单招职业适应性测试题库附答案
- 消防设施操作员基础知识课件
- 康熙字典汉字大全及字义解释(按笔画分类)
- 2022危险性较大的分部分项工程安全管理实施细则
- 巡检记录表巡检记录表
- 2023年度青春期家庭教育调查报告
- 音乐生职业生涯规划书
- GB/T 23617-2009林业检疫性有害生物调查总则
- GB 17498.2-2008固定式健身器材第2部分:力量型训练器材附加的特殊安全要求和试验方法
- 安全员之A证(企业负责人)【含答案】
- 二年级硬笔书法教学课件
- 部编 二年级语文上册 第五单元【集体备课】课件
评论
0/150
提交评论