选题表.doc

电视遥控器键盘盖的注塑模设计【含CAD图纸+文档】

收藏

压缩包内文档预览:
预览图
编号:37122035    类型:共享资源    大小:25MB    格式:ZIP    上传时间:2020-01-05 上传人:机****料 IP属地:河南
50
积分
关 键 词:
含CAD图纸+文档 电视 遥控器 键盘 注塑 设计 CAD 图纸 文档
资源描述:

压缩包内含有CAD图纸和说明书,均可直接下载获得文件,所见所得,电脑查看更方便。Q 197216396 或 11970985

内容简介:
任 务 书院(系): 专业: 班 级: 学生: 学号: 一、毕业论文课题电视遥控器键盘盖的注塑模设计二、毕业论文工作自 20xx 年 3 月 12 日起至 20xx 年 6 月 15 日止三、毕业论文进行地点 四、毕业论文的内容要求 (一) 设计之原始数据: 原始资料:电视遥控器键盘盖实物一个 (二) 设计计算及说明部分内容: 1.计算内容与方案确定: (1)成形零件设计:动、定模型腔尺寸的计算和布置。 (2)注塑机的选择 (3)结构系统设计计算:顶出机构、抽芯机构、冷却、浇注、排气系统等尺寸的计算与布置。 (4)强度设计和结构草图设计:各部件的强度校核。 2. 设计内容: (1)Pro/E环境下进行产品的模具设计; (2)注射模装配图一张以上(0#计算机图); (3)各组成零件的零件图(1#或2#计算机图); (4)编写设计(论文)说明书(不少于2.0万字,全部用计算机输出); (5)综述文献(要求书写一篇60008000字的与毕业设计内容相关的综述文章) (三) 主要参考资料: 1、塑料注射模具设计实用手册,航空工业出版社。 2、模具实用技术丛书编委会塑料模具设计制造与应用实例,机械工业出版社 2002.7 3、伍先明确、王群等,塑料模具设计指导,国防工业出版社。2006.5 4、邹继强,塑料模具设计参考资料汇编 清华大学出版社2005.9 5、模具实用技术丛书编委会模具材料与使用寿命,机械工业出版社 2000.4 6、材料力学,高等教育出版社。 7、颜智伟,塑料模具设计与机构设计,国防工业出版社,2005.8 8、塑料模具设计手册编写组, 塑料模具设计手册 9、阮锋等,Pro/ENGINEER2001模具设计与制造实用教程,机械工业出版社。 10、Pro/ENGINEER Wildfire模具设计实例教程精解,机械工业出版社。 11、实战Pro/ENGINEER2001模具设计,中国铁道出版社。 12、何满才 模具设计与加工MasterCAM9.0实例详解,人民邮电出版社。2006.0 (四)附属专题 1、专题外文翻译 检索与阅读与设计题目相关的外文资料,并书面翻译(并不少于3000字)的外文资料。指导教师 接受论文任务开始执行日期 20xx 年 3 月 12 日学生签名 附件 英文文献翻译译文: 注射成型CAD/CAE/CAM集成系统中国,华中科技大学,袁中双, 李德群,陈兴,叶翔高,高先科和肖景容著本文描述的是一个CAD/CAE/CAM集成系统。在 CAD/CAE阶段,注塑件的图纸可与模具零件交互转换,同时,根据用户需求,可以进行机械检验、运行平衡分析、流动分析及冷却模拟。在CAM阶段,能够生成线切割或铣床刀具路径的数控磁带。实践表明:该系统是模具设计与制造的有用工具。注射成型是当今工业最重要的聚合物加工方法之一,在复杂零件的大批量生产中,它具有以低成本获得高精度的优点。在相当长的一段时间里,经验、直觉与反复试验已成为模具设计、制造及成型操作的关键因素。而这些方法已越来越低效且其成本也越来越高,尤其是当其应用于大型零件和高精度零件或新型聚合物的注射成型加工。而现在,大部分这些问题已通过结合CAD/CAE/CAM的最新技术进展成功的解决了。近年来越来越多注射成型中的CAD/CAE/CAM集成系统已被研发并被传递到了西方工业国家,如美国AC一Teeh公司的C一M3.1,德国IKV公司开发的模具计算机辅助设计软件,加拿大McCill大学的MCKAM和澳大利亚MoldFlow公司开发的二维流动软件。通过使用这些软件包,注射成型零件的生产力及其数量能够提高,同时也缩短了其启动时间。自1980以来中国的注射成型CAD/CAE/CAM技术已取得了飞速发展. 我国作为这一领域的先驱,已经学习和开发注射成型CAD/CAE/CAM技术多年。 通过五年的发展和实践证明,一个注射成型CAD/CAE/CAM集成系统HSC-1.1,已被开发并且成功的被许多工厂所采用。系统描述HSC- 1.1是建立在个人电脑如PC386和PC486上的。其理想的内存大于等于4 MB,而其外部存储容量超过100 MB。图1所示为HSC - 1.1的软件要求。该系统是在操作系统II(OS/ 2)或MS - DOS环境下开发和运行的。在该系统中AutoCAD 10.0只作为一个图形编辑和绘图软件。编程采用的是标准Fortran语言和AutoLISP 77。除了几个图形驱动程序外,计算机中所有系统的软件是独立的,以确保该系统有较好的可移植性.如图2所示。HSC- 1.1集成了9个基于用户需求的设计功能模块。系统中的所有模块都是由一个名为控制面板或控制菜单的主控程序监控。用户可以通过控制面板命令显示在屏幕上的菜单来调用任何模块。而数据以数据文件的形式自动的从一个模块交换到另一个模块中。图3所示为HSC - 1.1数据流程图。HSC-1.1软件要求图2 HSC-1.1功能模块HSC-1.1数据流动表CAD功能模块CAD模块的任务是高效的把注射成型零件的图纸转换成模具零件图纸,并为模拟和数控模块提供所需数据。由于复杂型腔,一个曲面造型程序已包络在图形输入中了。故平面,曲面和双三次曲面可以轻松地创建。曲面的点坐标可由零件图尺寸和先前输入点坐标的程序来计算。当零件图纸的表面一个又一个的创建时,零件的尺寸通过互动尺寸将转换成型腔和型芯,而型腔和型芯的数据都将被记录下来作为为模具设计和模拟用。一种由中国人民共和国机电部发出的包含10种模具标准件套的据库已经设立了。每一套模具类包含13系列。因此,有31150套模具组合完全在数据库中。一旦腔布局确定,所有的标准模具零件可以通过互动尺寸自动选择。该系统为用户设计热流道系统,编辑型腔和型芯结构,布置顶针脚和冷却水道提供了一个功能组。最后能够生成所有的模具零件图,包括动模装配图,定模装配图和模具总装配图。图4所示为上海第九无线电厂生产的彩电开关插座的模具装配图。模具总装图CAE功能模块CAE模块包括CAD与CAE模块间的界面,模板的机械检验,运动平衡分析,流动和冷却仿真。在这些CAE模块的帮助下,模具结构设计得到了改善,同时我们能在模具制造前解决注射成型零件在注射过程中可能出现的缺陷,如降解、注射量不足、熔接痕位置不当。 通过CAD与CAE模块间的界面读取型腔的几何模型及在CAD前一阶段制成的可自动生成有限元网格模型的送料系统。用户使用该界面,还可以选择聚合物,冷却液,模具材料和设置如注射温度,注射时间,冷却液温度等成型工艺条件。该界面从数据库中读取材料的属性数据,并将网格结构、材料性能及成型工艺条件写入作为如下介绍CAE模块输入的数据文件中。目前,该系统使用二维有限元法(FEM)来分析模板的强度及其一个典型的模具截面的刚度。而基于三维有限元法的分析程序也正在开发中。为了保证在一模多腔生产中获得同等质量的注射成型零件,每个型腔应在相同的压力和温度下同时填充。这就要求浇注系统是平衡的。在HSC - 1.1中其平衡能够通过调整流道尺寸和用户初步设计阶段设计的最不可能平衡的浇口的尺寸来获得。流体模拟程序是该系统中最基本且最有用的分析之一。型腔流体控制方程能够通过将经典赫尔萧流扩展至非弹性流体中来获得。非牛顿流体在非等温条件下:其中P,T表示熔体压力和温度,和分别代表熔体的粘度和剪切速率; - 表示了Z的平均偏导数p,和 K,分别表示熔体的密度、比热和导电率;同时b表示的是半板厚度。因为注射成型零件的厚度尺寸通常比其模具A、B板的厚度小的多,故在解决此问题时,我们采用了一种强大的数值方案,即采用有限元与有限差分混合法。在该方案的实施过程中,平面统筹以有限元法来描述,同时,塑件壁厚方向的变量分布和时间导数是以有限差分来表达的。我们采用体积控制法推导出了有限元法及跟踪了熔体前端的流动。通过使用该流动仿真,用户能够获取如压力、流速、温度分布、总压降及夹紧力等对送料系统设计和优化工艺条件很有帮助的信息;此外,用户还能够通过改变浇口的数量和位置来促进型腔的填充并获得最佳的流态。冷却模拟包括三维稳态和瞬态冷却分析。三维稳态冷却分析采用的是边界元法(BEM)。型腔表面建模,冷却线和外部表面公式已经建立并证明是可靠和有效的。基于稳态冷却仿真,三维瞬态冷却仿真已经研制成功。一种新的边界元法已通过此模块,以消除数值机构一体化。有了这个组件,用户可以计算腔与道之间的换热,减少了冷却时间并降低了模具与注塑成型零件表面的预热温度。 CAE模块的所有执行结果可以以等高线图,阴影彩色图像和各种曲线图动态显示,以帮助用户提高他们的设计效率。CAM功能模块刀具路径的创建基于前述CAD阶段绘制的型腔和型芯的几何模型。对于数控线切割机床和数控铣床,其刀具路径的数控磁盘是通过使用后置处理来生成的。目前,仅有数控线切割的功能在实践中有采用。而我国工厂通过使用HSC-1.1系统已设计和制造了许多注射模具。结论HSC-1.1是一个集成CAD/CAE/CAM的注射成型系统。除少数图形驱动器程序外,计算机系统的其他所有程序是独立的。这就确保了系统良好的可移植性。同时,系统模块化结构,也保证了系统中每一个模块具有良好的延展性及维修性。实践表明:HSC-1.1是一个强大的模具设计和制造工具,它可以帮助工程师以较低的模具成本获得较好的模具质量。因此,HSC-1.1在模具行业中的运用已越来越广泛了。参考文献:1 . WANG, K. K. : Polymer Plastics Technology Engineering, 1980, 1, p.752 .MENGES, G.: Plastics Engineering,1983, 8, p.373 .KAMAL, M. R. etal.: Application of computer aided engineering in injection moulding (Hanser Publisher, 1987,p.247)4 .AUSTIN, C: Application of computer aided engineering in injection moulding(Hanser Publisher, 1987, p. 137)5 .WANG, V. W., Ph.D. thesis, Cornell University, 1985原文: Integrated CAD/CAE/CAM system for injection mouldingby Yuan Zhongshuang, Li Dequn, Chen Xing, Ye Xiangao,Gao Xianke and Xiao JingrongHuazhong University of Science & Technology, ChinaAn integrated CAD/CAE/CAM system, HSC-1.1, is described in this article. At the CAD/CAE stage the drawings of injection moulded parts can be transformed into the drawings of the mould parts interactively and, according to the users needs, the mechanical check, runner balance analysis, flow simulation and cooling simulation can be carried out. NC tapes for wire cutting or milling machine tools can be generated at the CAM stage. The practice shows that the system is a useful tool for mould designers and manufacturers.IntroductionInjection moulding is one of the most important polymer processing operations in industry today. It is superior for mass production of complex parts to high precision at low cost. For a long time, experience, intuition and trial and error have been key factors in mould designing, mould manufacturing and moulding operation. These approaches have become increasingly inefficient and costly, especially when applied to the moulding of large parts and parts of high precision or to the processing of new kinds of polymers. Now some of these problems are being solved successfully by combining recent advances in CAD, CAE and CAM technology.In recent years more and more CAD/CAE/CAM systems for injection moulding have been developed and delivered in Western industrialized countries, such as C-MOULD 3.1 of AC Technology Inc. in the USA, CAD-MOULD of IKV in Germany, McKAM-ll of McCill University in Canada, and MoldFlow in Australia. With the help of these software packages the productivity and quality of injection moulded parts can be improved and the start-up time can be shortened.CAD/CAE/CAM technology for injection moulding has been developed quickly in China since1980. As a pioneer in this field in our country, we have studied and developed CAD/CAE/CAM technology of injection moulding for many years. Through five years development and practical verification, an integrated CAD/CAE/CAM system for injection moulding, HSC-1.1, has been developed and put into use successfully in many factories.System descriptionHSC-1.1 is developed on personal computers such as the PC386 and PC486. The desirable internal storage is 4 MB or more, and the external storage is more than 100 MB.Fig. 1 shows the software requirements of HSC-1.1. The system is developed and run under theenvironment of Operating System II (OS/2) or MS-DOS. In the system AutoCAD-10.0 is used only as a graphic editor and drawing software. Standard Fortran 77 and AutoLisp are used for programming. Except for a few of programs for graphic driver, all the software in the system is independent of computers, which ensures good portability of the system.As shown in Fig. 2, HSC-1.1 integrates nine modules with their function design based on the requirements of users. All modules in the system are supervised by a main control program named control panel or control menu. Users can invoke any module by ordering the menu displayed on the screen by the control panel. The data exchange from one module to another is implemented automatically in the form of data files. Fig. 3 shows the data flowchart of HSC-1.1.Function of CAD modulesThe task of CAD modules is to transform the drawings of injection moulded parts into the drawings of mould parts efficiently and provide necessary data for simulation and NC modules. Due to complex cavities, a surface modelling program has been eveloped for graphic input. Planes, regular surfaces and bi-cubic surfaces can be created easily. The co-ordinates of points on surfacescan be calculated by the programusing dimensions of the part drawing and the co-ordinates of the points input before. While the part drawing is being input one surface after another, the dimensions of the part will be transformed into the dimensions of the cavity and core through interaction. The data for the cavity and core are recorded for both mould design and simulation. A database for standard mould sets has been set up which contains ten kinds of standard mould sets issued by the Electrical Ministry of the Peoples Republic of China. Each kind of mould set contains 13 series. Hence there are 31150 combinations of mould sets altogether in the database. Once the cavity layout is determined, all the standard mould parts can be selected automatically and dimensioned through interaction. The system provides a group of functions for users to design the runner system, edit construction of cavity and core and arrange ejection pins and cooling lines. Finally all the mould part drawings including moving mould assembly, stationary mould assembly and general mould assembly drawing can be produced. Fig. 4 shows a mould assembly drawing of a switch socket made in the Shanghai No. 9 Radio Factory for colour TV sets. Function of CAE modulesCAE modules include the interface between CAD and CAE modules, mechanical check for mould plates, runner balance analysis, flow simulation and cooling simulation. With the help of these CAE modules the mould construction design can be improved and possible defects in injection moulded parts such as degradation, short shots, and improper location of weld lines can be addressed before mould making.The interface between CAD and CAE modules reads the geometric model of cavity and delivery system which is produced at the previous CAD stage and generates FEM mesh automatically. Using the interface, users can also select polymer, coolant, mould material and set process conditions such as injection temperature, injection time, coolant temperature etc. The interface reads the property data of the materials from the data bank and writes the mesh configuration, material properties and process conditions into data files which are the inputs for the CAE modules described below.Currently the system uses a 2D finite-element method (FEM) to analyse the mould plates strength and rigidity for a typical mould cross-section. An analysis program based on a 3D FEM is under development.In order to guarantee the same qualities of the injection moulded parts produced in multi-cavities, each cavity must be filled simultaneously at the same pressure and temperature. This requires the runner system to be balanced. In HSC-1.1 the balance can be reached by correcting the dimensions of runners and gates designed by users at the preliminary design stage which are most probably not balanced.The flow simulation program is one of the most basic and useful analyses in the system. Thegoverning equations for flow in cavity can be obtained by extending the classical Hele-Shaw flow to an inelastic, non-Newtonian fluid under non-isothermal conditions: i-(rti) + J- (bv) =0dX df/+u+ vdt dx ByBz2where P, Fare the pressure and temperature of melt, respectively; r|, y represent viscosity and shear rate; denotes an average over z, the gap wise co-ordinate; p, Cp and K are density, specific heat and heat conductivity of the melt, respectively; and b is the half gap thickness. Because the thickness dimension of an injection moulded part is often much smaller than the other two dimensions, a powerful numerical scheme, which is the hybrid of the finite element and finite difference methods (FEM/FDM), is adopted in the solution. In the implementation of the scheme, the planar co-ordinates are described in terms of finite elements and the gapwise and time derivatives are expressed in terms of finite differences. A control volume approach is adopted to derive the finite-element formulation and track the melt front movement. By use of flow simulation, users can acquire information such as pressure, velocity and temperature distributions, total pressure drop, clamp force etc., which is very helpful in designing the deliver helpful in designing the delivery system and optimising the process conditions. Users can also animate the filling of the cavity and obtain an optimum flow pattern by changing the number and locations of gates.Cooling simulation includes 3D steady and transient cooling analyses. The 3D steady cooling analysis uses the boundary element method (BEM). Formulas for modelling the cavity surfaces, cooling lines and exterior surfaces have been established and proven to be reliable and effective. Based on the steady cooling simulation, 3D transient cooling simulation has been developed. A novel BEM has been adopted in this module to eliminate numerical body integration. With the help of this module users can calculate heat transfer between cavity and cooling channels, reduce cooling time and predict temperature along mould and injection moulded part surfaces.All results of CAE modules can be displayed dynamically with contour plots, shaded colour images and various curve plots to aid users in improving their design.Function of CAM moduleThe cutter location files can be created based on the geometry of cavity and core which is modelled at the previous CAD stage. NC tapes can then be generated by use of postprocessors for both NC wire cutting machine tools and NC milling machine tools. Currently only the function of NC wire cutting is used in practice. A lot of injection moulds have been designed and manufactured by using the system HSC-1.1 in factories in our country.ConclusionsHSC-1.1 is an integrated CAD/CAE/CAM system for injection moulding. All programs in the system are independent of computers except a few programs for the graphic driver. It ensures the systems good portability. The modular structure of the system guarantees that each module of the system has good expandability and maintainability. The practice shows that HSC-1.1 is a powerful tool for mould designing and manufacturing. It can assist engineers in cutting mould cost and improving mould quality. HSC-1.1 will find more and more applications in the mould industry.References1 WANG, K. K. : Polymer Plastics Technology Engineering, 1980, 1, p.752 MENGES, G.: Plastics Engineering, 1983, 8, p.373 KAMAL, M. R. etal.: Application of computer aided engineering in injection moulding (Hanser Publisher, 1987, p.247)4 AUSTIN, C: Application of computer aided engineering in injection moulding (Hanser Publisher, 1987, p. 137)5 WANG, V. W., Ph.D. thesis, Cornell University, 1985 IEE: 1993 The authors are with Huazhong University of Science & Technology, Wuhan 430074, Peoples Republic of China 学号: 毕业设计说明书电视遥控器键盘盖的注塑模设计T
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:电视遥控器键盘盖的注塑模设计【含CAD图纸+文档】
链接地址:https://www.renrendoc.com/p-37122035.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!