已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
The future of biomedical materials生物医用材料的展望James M. Anderson詹姆斯M安德森Abstract 摘要The purpose of this communication is to present the authors perspectives on the future of biomedical materials that were presented at the Larry L. Hench Retirement Symposium held at Imperial College, London, in lateSeptember 2005. 这次交流的目的是为了表达作者的观点,这个观点是在2005年9月后期在伦敦帝国学院举行的Larry L. Hench退休座谈会上被提出来的。The author has taken a broad viewof the future of biomedical materials and has presented key ideas, concepts, and perspectives necessary for the future research and development of biomedical polymers and their future role as an enabling technology for the continuing progress of tissue engineering, regenerative medicine, prostheses, and medical devices. 作者放眼生物医用材料的未来前景并介绍了主要观点、概念、将来实验所必须的透视图、生物医用材料的发展以及将来作为组织工程学连续发展、再生医药、假肢、医疗设备等的授权工艺。This communication, based on the oral presentation, is meant to be provocative and generate discussion. 这份基于口头报告的交流意味着将挑起激烈讨论。In addition, it is targeted for students and young scientists who will play an ever-increasing role in the future of biomedical materials. 此外,它是针对将来在生物医用材料方面扮演越来越重要角色的学生和青年科学家。Introduction简介Over the past decade, research and development of new biomedical materials has turned from “passive” materials to materials that actively interact and integrate with their biological environment. 在过去的几十年里,新生物医用材料的研究和发展已经从“被动的”材料转向和生物环境积极相关并成为整体的材料。Unfortunately, this paradigm shift has not been matched by a requisite enhancement of our knowledge of the mechanisms of interaction between the materials and proteins, cells, and other materials within the biological environment. 不幸的是,这种范例的转变和我们必备的知识不相匹配。这种知识就是材料与蛋白质、细胞以及其他生物环境的材料相互作用的机理。Given the unique nature of tissues and organs, we lack biological design criteria for the development of new materials and devices constructed from these materials.考虑到组织和器官的独特性质,由于新材料和新设备的发展是从这些材料出发的,我们至今缺少生物设计的标准。Additional constraints in our developing biological design criteia and structure/biological property relationships are our dependence on in vitro studies and non-human models in the development process.在我们发展生物设计标准和结构的过程中,还存在额外的限制因素。在研究过程中,生物学性质的关系仅仅依赖于试管研究和非人体模型。The history of biomaterials生物材料的历史As has been stated by many authors in many different ways, if we do not understand and appreciate the past, we are doomed to repeat it in the future. 正如许多作者用不同的方法阐述的一样,如果我们没有理解和领会过去,将来我们注定会重复过去。Table 1 presents the authors perspective on the history of biomaterials.表1展示了作者关于生物材料的观点。As exemplied by the change in font size of the word “biomaterials”, the rst quarter century, 1950 to 1975, of biomaterials development was dominated by the characteristics of the materials intended for prostheses and medical devices. 正如改变单词“biomaterials”字体大小的例证,第一个四分之一世纪,即从1950年到1975年,生物材料的发展是以做假体和医学设备材料为主导的。Important in the early days was the long-term integrity of the biomaterial as well as its non-toxic nature. 早些年,生物材料的长期稳定性和无毒性是很重要的。Biological interactions that were considered included the non-toxic nature of the biomaterial as well as its normal inammatory and wound healing responses when implanted. 在移植过程中,要考虑生物间的相互作用,包括生物材料的无毒性、常规的发炎以及伤口愈合的效应。Many materials were described as being inert, but this was a confusing descriptor as it did not adequately and appropriately describe material changes following implantation or cell and tissue responses to the implanted biomaterial. 许多材料被描述成不活泼的,但这是一个让人困惑的描述。因为它没能充分准确地描述移植过程材料发生的变化或细胞和组织对移植的生物材料作出的反应。It eventually became clear that materials could change without adversely affecting the function and interaction of the biomaterial, prosthesis, or medical device. 材料在变化中不会对生物材料、假体或医疗设备的功效产生不利影响最终变得清晰。Likewise, modulation of the inammatory and wound healing responses could occur without altering the function of the biomaterial, prosthesis, or medical device. 同样地,炎症的调节和伤口愈合可以在不改变生物材料、假体或医疗设备功能的前提下完成。From a biological perspective, no material is inert.从生物学角度来看,没有哪种材料是无效的。From 1975 to 2000, biological interactions with biomaterials began to be more extensively investigated. 从1975年到2000年,生物学和生物材料的相互作用开始被广泛研究。Advances in our knowledge of biological mechanisms, for example, the coagulation, thrombosis, and complement pathways, led to a better understanding of biological interactions with biomaterial surfaces.在生物机理知识方面的进步,比如凝结作用、血栓形成、补充途径等使我们能更好的理解与生物材料表面的生物作用。In the 1980s, the revolution in techniques for the study of cell and molecular biology led to their application to the investigation of interactions occurring at biomaterial interfaces. 在20世纪80年代,在细胞和生物分子学研究中的技术改革引发了它们在生物材料界面应用的研究。More recently, with the advent of the areas of tissue engineering and regenerative medicine, heavy emphasis has been placed on biological interactions with biomaterials.近来,随着组织工程学和再生医药的出现,生物材料和生物体间的相互作用越来越引起人们的重视。In some cases, this has led to an undesirable decrease in the appreciation of material properties and their role in thesenew scientic areas. 在某些情况下,生物体与生物材料间的相互作用会导致材料性质评价和它们在新的科学领域地位的下降。An example of these types of problems is presented with biodegradable polymer scaffolds for tissue engineering and their ultimate disposition including changes in form and integrity with resultant changes in the inammatory and foreign body reactions over the implantation time period.可生物降解的高分子支架在组织工程学和它们最终的分解中呈现的就是这类问题的一个例子,所提到的分解包含在移植过程中由于炎症与外来体相互作用而导致形式和生成物组成的改变。Table 1 History of biomaterials19501975 bioMATERIALS19752000 BIOMATERIALS2000 BIOmaterialsMedical implant design医疗植入体的设计In approaching the research and development of new biomedical materials for prostheses and medical devices as well as an enabling technology for tissue engineering and regenerative medicine, a comprehensive, virtually all-inclusive perspective is initially necessary to begin to appreciate design criteria.在假体和医疗设备的新型生物材料研究开发和增长关于组织工程学和再生医学的过程中,欣赏设计标准已经综合广泛地被提出来了。Table 2, Medical Implant Design, illustrates this in a simple manner. 表2,一种很简单的方式描述了医疗植入体的设计。The development of design criteria begins with the identification of patient needs. 设计标准的发展开始于病人需要的认同。We must remember that our overall goal is to provide biomedical materials, prostheses, medical devices, and other constructs that will enhance the health and welfare of patients. 我们必须意识到,我们总的目标是向病人提供可以提高健康和福利的生物医用材料、假体、医疗设备和其他构造。With the identification of patient needs, concepts are then developed based on known anatomical and physiological processes and their alteration by disease processes that are integrated to begin the design process. 随着对病人需要的识别,基于了解解剖和生理过程的观念已开始发展。通过病理过程而改变它们已经和开始设计的过程结合在一起。Following from this, configuration, prototype, manufacture and assembly, test/use, reliability, and clinical trials follow from the original design criteria. 从这以后,由初始设计标准产生了构型、原型、加工组装、测试使用、可靠性以及临床试验。It is important to note that the last factor in medical implant design is implant retrieval and evaluation. 在医疗体植入设计中,注意最后一个因素,即移植的检索和评价是很重要的。Implant retrieval and evaluation permits the identification of modes and mechanisms of failure or success that ultimately in turn provide feedback information for further development of the concept based on additional design criteria obtained from implant retrieval and evaluation.移植的检索和评价可以鉴别模型成功与否,最终为基于从移植检索和评价中得到额外设计标准观念的进一步发展提供反馈信息。The author acknowledges the significant contribution of Dr. John Watson, Department of Bioengineering, University of California-San Diego, La Jolla, CA, who originally developed this construct of medical implant design during his tenure at the National Heart, Lung, and Blood Institute in Bethesda, MD.作者承认约翰沃特森博士的重大贡献,约翰沃特森博士来自加州大学圣地亚哥分校的生物工程部门,他最初在贝塞斯达国家心脏,肺及血液协会医学部时,就研究了医疗植入体设计的这种构造。Table 2 Medical implant design1. PATIENT NEEDS2. CONCEPT3. CONFIGURATION4. PROTOTYPE5. MANUFACTURE AND ASSEMBLY6. TEST/USE7. RELIABILITY8. CLINICAL TRIALS9. IMPLANT RETRIEVALBiomedical materials and devices生物医用材料及设备Over the past decade, new constructs bringing together synthetic and biological components have been developed and described as being biomimetic, biohybrid, or combination products. 在过去的十年里,伴随着合成和生物学元件而生的新的设计被开发出来,并制造出了仿生型、生物混合和化合产品。It should be noted that combination products are not necessarily new. 值得注意的是化合产品未必都是新的。For example, collagen coated vascular grafts were developed in the 1980s. 例如,在20世纪80年代年开发的胶原涂层血管移植物。The use of biodegradable polymers to deliver drugs was also developed in the 1980s. 同时期也开始了运输药物的可生物降解高聚物的使用。Both of these types of combination products have found extensive clinical use for the treatment of various diseases.所有这些类型的化合产品在治疗各种疾病时表现出了广泛的临床使用效果。A more current example of a combination product that has proven successful is the development of the drug eluting stent for the treatment of atherosclerotic, occlusive coronary artery disease. 当前更能说明化合产品成功的一个例子就是治疗动脉硬化,闭塞性冠状动脉疾病的药物洗脱支架。The complex, interactive nature of drug eluting stents is illustrated in Fig. 1. 图1描述了药物洗脱支架复杂的相互作用的性质。In approaching design criteria for drug eluting stents, the stent, polymer matrix, drug, and interactive vascular tissue must be considered in the development of design criteria.在设计标准的开发过程中,必须考虑药物洗脱支架、聚合物基质、药物、互动的维管组织的设计标准。These obviously then speak to important contributions from materials engineering, polymer chemistry, pharmacology, and vascular biology. 这些明显证明了对材料工程、高分子化学、药理作用及血管生物学的重要贡献。Integrating these into design criteria and the important issues involved in the development of a drug eluting stent are further identified in Fig. 1.将这些融入到设计标准中,开发药物洗脱支架涉及的重要问题在图1中都做了进一步描述。The author appreciates the use of this figure through the efforts of Dr.Lothar Kleiner and Dr. Syed Hossainy of the Guidant Corporation, Santa Clara, CA.笔者对Lothar Kleiner博士和Syed Hossainy博士在图表使用过程中所做的努力表示感谢。Fig. 1 An interdisciplinary approach to drug-eluting stent developmentChallenges and barriers挑战和阻力In the future use of biomedical materials as an enabling technology and the development of new biomaterials and tissue engineering constructs, numerous challenges and barriers are present. 作为一种促成技术,生物材料的应用和新型生物材料及组织生物工程构建的开发在未来的应用中呈现出大量挑战和阻力。Table 3 presents a limited and biased perspective on some of the major challenges and barriers to the successful development of new biomedical materials and tissue engineered constructs. 表3,对成功开发新型生物材料及组织生物工程构建中遇到的主要挑战和阻力存在一定局限性和偏见。Rarely is the architecture of the tissue and organs taken into consideration as a design criterion. 组织和器官的架构很少被考虑作为设计的标准。All vascularized organs and tissues have a tissue skeleton that is basically arteries, veins, lymphatics, and nerves, which are contained within an extracellular matrix, composed mainly of collagen. 所有的供血器官和组织都有一个组织骨架,主要是包含于主要有胶原质组成的细胞外基质中的动脉、静脉、淋巴管、神经。Most certainly, veins, lymphatics, and nerves generally are not considered in the development of tissue engineered constructs.当然,在组织工程学构建的研发过程中,静脉、淋巴管、神经一般是不被考虑的。From a biomaterials perspective, little is known that relates the two-dimensional in vitro behavior of cells with their behavior in three-dimensional matrices and scaffolds. 从生物学角度来看,细胞的二维试管行为和其三维矩阵和支架行为间几乎没什么关联。Studies relating these dimensional aspects are necessary to provide guidance for further studies as well as interpretation of results obtained from studies in these systems.这些与尺寸相关的研究在为未来的研究提供指导,同时在理解这些体系中得到的结果中是很有必要的。In addition, cells are large, micron-dimensional structures when compared to nano-scale structures such as receptors or even macromolecules, and an appreciation of the dimensional scale in cell/material interactions is needed. 此外,在与纳米级结构,比如受体、大分子和空间范围内细胞的评价相比,毫米级的大细胞结构中材料的相互作用是很有益的。A major void in knowledge exists in appreciating the similarities and differences in species that may be used to test new biomedical materials and tissue-engineered constructs. 存在鉴赏异同物种间的主要空白知识,可以用来测试新的生物医用材料和组织结构。An appreciation of the similarities and differences is necessary. 鉴别异同是很有必要的。Little is known regarding the similarities and differences in the cellular behavior between species. 关于鉴别细胞行为物种之间的异同,至今鲜为人知。An excellent example here is the relatively rapid endothelialization of vascular graft materials in a wide variety of mammals when compared to the virtual non-endothelialization of vascular grafts in humans.这儿有一个很好的例子,当和人类虚拟而且不迁移的血管移植相比,血管移植材料在各种各样的哺乳类中迁移相对迅速。Further knowledge is necessary regarding stem cells, bone marrow cells, and other cell types that would be used in cell culture systems and tissue reactors for constructing products to be used in tissue engineering or regenerative medicine.至于干细胞、骨髓细胞和其他用于细胞培植体系的细胞,以及用于组织工程或再生医药构建的组织反应器。我们还需要掌握更多相关知识。From a biological perspective, inflammation, immune responses, wound healing, and developmental biology share many interacting and overlapping pathways. 从生物学角度来看,炎症、免疫反应、创伤修复、发育生物学分享 许多相互的、重叠的路径。Knowledge here is scant and thus limits the appreciation of these processes and their ultimate usefulness.这方面知识的欠缺限制了对它们加工和最终效能的鉴别。Emphasis in tissue-engineered constructs is generally placed on providing vascularity to these constructs for the maintenance of cell life; 强调组织工程构建,一般就是把血管供应强加于维持细胞生命的构造中。however, the venous return of the deoxygenated blood has not been appreciated in tissue-engineered constructs. 然而,缺氧血的静脉回流在组织工程构建中还未被鉴别。This area offers additional opportunity for significant contributions. 这个领域为为人类作出重大贡献提供了额外的机会。Finally, the literature contains numerous examples of devices that have not fully appreciated the appropriate design criteria and thus are ei
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房租合同签安全协议
- 房租租金入股协议书
- 手工品外包合同范本
- 手机厂家授权协议书
- 手机销售协议书范本
- 打包箱租赁合同范本
- 托儿所招聘合同范本
- 托管学生接送协议书
- 专题22.1 比例线段(四大题型总结)(压轴题专项讲练)(学生版)
- 泌尿系结石系统化防治新进展相关试题及答案
- 品管圈PDCA改善案例-降低住院患者跌倒发生率
- 国家开放大学《数据结构》课程实验报告(实验2-线性表)参考答案
- 《极致挑逗:双人共抚全图解120招》读书笔记模板
- 全国行政区划代码
- 大客户营销方法论
- 大唐南京发电厂消防安全考核规定
- YS/T 399-2013海绵铪
- JJF 1663-2017激光测微仪校准规范
- GB/T 4117-2008工业用二氯甲烷
- 风能系能源公司风电场备品备件储备管理标准
- (完整版)输血科生物安全手册(规范装订册)
评论
0/150
提交评论