免费预览已结束,剩余16页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2015-2016学年湖南省长沙一中高三(上)第二次月考数学试卷(文科)一、选择题(本大题共12小题,每小题5分,满分60分在每小题给出的四个选项中,只有一项是符合题目要求的)1已知集合a=(x,y)|y=ex,b=(x,y)|y=a,若ab=,则实数a的取值范围是()aa1ba1ca0da02设命题p:函数f(x)=x3在r上为增函数;命题q:函数f(x)=cosx为奇函数则下列命题中真命题是()apqbp(q)c(p)(q)d(p)q3已知向量=(2,4),=(1,1),则2=()a(3,7)b(3,9)c(5,7)d(5,9)4函数f(x)=log2(x2+5x6)的定义域是()a2,3b(6,1c(,1)(6,+)d(,6)(1,+)5执行如图所示的程序框图,则输出s的值为()abcd6将函数的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,所得图象的一条对称轴方程可能是()abcd7设a=log36,b=22,c=log2,则()aabcbbcaccbadcab8已知向量,满足|+|=|=|,则向量与+夹角的余弦值为()abc0d19在abc中,内角a、b、c所对的边分别为a、b、c,a=c且满足cosc+(cosasina)cosb=0,则abc是()a钝角三角形b等边三角形c直角三角形d不能确定10设函数f(x)=,若ff()=4,则b=()a1bc或1d111若点p是函数f(x)=x2lnx上任意一点,则点p到直线xy2=0的最小距离为()abcd312已知p(2,)在双曲线=1上,其左、右焦点分别为f1、f2,三角形pf1f2的内切圆切x轴于点m,则的值为()a21b2+1c22d2二、填空题(本大题共4小题,每小题5分,共20分)13已知复数z1=1+i,z2=1i,若z=,则|z|=14已知数列an满足a1=1,(2n1)an+1=2(2n+1)an,则a6=15如图,已知正方形abcd的边长为2,点e为ab的中点以a为圆心,ae为半径,作弧交ad于点f若p为劣弧上的动点,则的最小值为16直线y=m与y=2x3及曲线y=x+ex分别交于a、b两点,则ab的最小值为三、解答题(本大题共6小题,共70分解答应写出文字说明、证明过程或演算步骤)17在等差数列an中,a1=1,其前n项和为sn=n2(1)求数列an的通项公式an;(2)若bn=,求数列bn中的最小项及取得最小项时n的值18已知向量=(sin2x+2,cosx),=(1,2cosx),设函数f(x)=(1)求f(x)的最小正周期与0,2上函数的单调递减区间;(2)在abc中,a、b、c分别是角a、b、c的对边,若a=,b=1,abc的面积为,求a的值19已知函数f(x)=x24x+2a+3,ar(1)若函数f(x)在1,1上有零点,求a的取值范围;(2)设函数g(x)=mx2m,mr,当a=0时,x11,4,总存在x21,4,使f(x1)=g(x2),求m的取值范围20设abc的内角a,b,c的对边分别是a,b,c,已知a=,a=bcosc()求角c的大小;()如图,在abc的外角acd内取一点p,使pc=2,过点p作pmca于m,pncd于n,设线段pm,pn的长分别为m,n,pcm=x,且,求f(x)=mn的最大值及相应x的值21已知椭圆=1(ab0)的中心为o,它的一个顶点为(0,1),离心率为,过其右焦点的直线交该椭圆于a,b两点(1)求这个椭圆的方程;(2)若oaob,求oab的面积22已知函数f(x)=alnxx+2,其中a0()求f(x)的单调区间;()若对任意的x11,e,总存在x21,e,使得f(x1)+f(x2)=4,求实数a值2015-2016学年湖南省长沙一中高三(上)第二次月考数学试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,满分60分在每小题给出的四个选项中,只有一项是符合题目要求的)1已知集合a=(x,y)|y=ex,b=(x,y)|y=a,若ab=,则实数a的取值范围是()aa1ba1ca0da0【考点】交集及其运算【专题】计算题;集合思想;综合法;集合【分析】根据ab=,结合曲线x=a与y=y=ex的位置关系,即可得到结论【解答】解:集合a对应的图象为y=ex,要使ab=,则直线x=a,与y=ex没有交点,y=ex的值域为(0,+),要使ab=,则a0,故选:d【点评】本题考查集合的运算,考查学生的计算能力,属于基础题2设命题p:函数f(x)=x3在r上为增函数;命题q:函数f(x)=cosx为奇函数则下列命题中真命题是()apqbp(q)c(p)(q)d(p)q【考点】复合命题的真假【专题】简易逻辑【分析】先判断出p,q的真假,从而判断出复合命题的真假即可【解答】解:命题p:函数f(x)=x3在r上为增函数,是真命题,命题q:函数f(x)=cosx为奇函数,是假命题,故p(q)是真命题,故选:b【点评】本题考查了复合命题的判断,考查考查函数的奇偶性和单调性,是一道基础题3已知向量=(2,4),=(1,1),则2=()a(3,7)b(3,9)c(5,7)d(5,9)【考点】平面向量的坐标运算【专题】平面向量及应用【分析】直接利用向量的坐标运算求解即可【解答】解:向量=(2,4),=(1,1),则2=2(2,4)(1,1)=(5,7)故选:c【点评】本题考查向量的坐标运算,考查计算能力4函数f(x)=log2(x2+5x6)的定义域是()a2,3b(6,1c(,1)(6,+)d(,6)(1,+)【考点】函数的定义域及其求法【专题】函数的性质及应用【分析】由x2+5x60,解得x范围即可得出函数f(x)的定义域【解答】解:由x2+5x60,解得x1或x6函数f(x)=log2(x2+5x6)的定义域是(,6)(1,+)故选:d【点评】本题考查了函数的定义域的求法、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题5执行如图所示的程序框图,则输出s的值为()abcd【考点】程序框图【专题】算法和程序框图【分析】根据已知的框图,可知程序的功能是利用循环累加循环变量的值到累加变量s,并在循环变量k值大于等于8时,输出累加结果【解答】解:模拟执行程序框图,可得s=0,k=0满足条件k8,k=2,s=,满足条件k8,k=4,s=+,满足条件k8,k=6,s=+,满足条件k8,k=8,s=+=,不满足条件k8,退出循环,输出s的值为故选:a【点评】本题考查的知识点是程序框图,当程序的运行次数不多时,我们多采用模拟程序运行的方法得到程序的运行结果6将函数的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,所得图象的一条对称轴方程可能是()abcd【考点】函数y=asin(x+)的图象变换【专题】三角函数的图像与性质【分析】根据三角函数的图象变换关系进行求解即可【解答】解:将函数的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,得到函数y=sin(),由=+k,即+2k,kz,当k=0时,函数的对称轴为,故选:d【点评】本题主要考查三角函数的图象变换关系以及三角函数对称轴的计算,求出函数的解析式是解决本题的关键7设a=log36,b=22,c=log2,则()aabcbbcaccbadcab【考点】对数值大小的比较【专题】转化思想;数形结合法;函数的性质及应用【分析】利用指数函数与对数函数的单调性即可得出【解答】解:a=log361,0b=221,c=log20,abc,故选:a【点评】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于中档题8已知向量,满足|+|=|=|,则向量与+夹角的余弦值为()abc0d1【考点】数量积表示两个向量的夹角【专题】平面向量及应用【分析】由题意可得,即,再由已知|=|,可得向量与+夹角为,夹角的余弦值为【解答】解:由|+|=|=|,得:,即,解得:,|=|,且,向量与+夹角为,夹角的余弦值为故选:a【点评】本题考查平面向量的数量积运算,关键是对数量积公式的记忆与运用,是基础题9在abc中,内角a、b、c所对的边分别为a、b、c,a=c且满足cosc+(cosasina)cosb=0,则abc是()a钝角三角形b等边三角形c直角三角形d不能确定【考点】正弦定理【专题】解三角形【分析】利用三角函数恒等变换的应用化简已知等式可得sinasinb=sinacosb,由sina0,可解得tanb=,结合范围b(0,),可求b=,由a=c及三角形内角和定理可得a=b=c=,从而得解【解答】解:cosc+(cosasina)cosb=0,cos(a+b)+cosacosbsinacosb=0,cosacosb+sinasinb+cosacosb=sinacosb,sinasinb=sinacosb,(sina0)sinb=cosb,tanb=,又b(0,),解得:b=又a=c,即a=c,且a+b+c=,解得:a=b=c=三角形是等边三角形故选:b【点评】本题主要考查了三角函数恒等变换的应用,考查了三角形内角和定理的应用,三角形形状的判定,属于基本知识的考查10设函数f(x)=,若ff()=4,则b=()a1bc或1d1【考点】分段函数的应用【专题】函数的性质及应用【分析】直接利用分段函数,通过解方程求解函数值即可【解答】解:函数f(x)=,若ff()=4,f(1b)=4当1b1即b0时,3(1b)b=4,解得b=,(舍去);当b0时,21b=4,解得b=1故选:d【点评】本题考查分段函数的应用,函数的零点以及方程根的关系,考查计算能力11若点p是函数f(x)=x2lnx上任意一点,则点p到直线xy2=0的最小距离为()abcd3【考点】利用导数研究曲线上某点切线方程;点到直线的距离公式【专题】转化思想;导数的综合应用【分析】由题意知,当曲线上过点p的切线和直线xy2=0平行时,点p到直线xy2=0的距离最小,求出曲线对应的函数的导数,令导数值等于1,可得且点的坐标,此切点到直线xy2=0的距离即为所求【解答】解:点p是曲线f(x)=x2lnx上任意一点,当过点p的切线和直线xy2=0平行时,点p到直线xy2=0的距离最小直线xy2=0的斜率等于1,由f(x)=x2lnx,得f(x)=2x=1,解得:x=1,或 x=(舍去),故曲线f(x)=x2lnx上和直线xy2=0平行的切线经过的切点坐标(1,1),点(1,1)到直线xy2=0的距离等于,故点p到直线xy2=0的最小距离为故选:a【点评】本题考查点到直线的距离公式的应用,函数的导数的求法及导数的意义,体现了转化的数学思想,是中档题12已知p(2,)在双曲线=1上,其左、右焦点分别为f1、f2,三角形pf1f2的内切圆切x轴于点m,则的值为()a21b2+1c22d2【考点】双曲线的简单性质【专题】综合题;数形结合;综合法;圆锥曲线的定义、性质与方程【分析】根据题意,利用切线长定理,再利用双曲线的定义,把|pf1|pf2|=4,转化为|af1|hf2|=4,从而求得点m的横坐标,即可得出结论【解答】解:p(2,)在双曲线=1上,可得b=,f1(3,0)、f2(3,0),如图,设m(x,0),内切圆与x轴的切点是点m,pf1、pf2与内切圆的切点分别为n、h,由双曲线的定义可得|pf1|pf2|=2a=4,由圆的切线长定理知,|pn|=|ph|,故|nf1|hf2 |=8,即|mf1|hf2|=4,设内切圆的圆心横坐标为x,则点m的横坐标为x,故(x+3)(3x)=4,x=2=(22,)(32,0)=22,故选:c【点评】本题考查双曲线的定义、切线长定理,体现了转化的数学思想以及数形结合的数学思想,正确运用双曲线的定义是关键二、填空题(本大题共4小题,每小题5分,共20分)13已知复数z1=1+i,z2=1i,若z=,则|z|=1【考点】复数求模;复数代数形式的乘除运算【专题】数系的扩充和复数【分析】利用复数的运算法则、模的计算公式即可得出【解答】解:z=i,则|z|=1故答案为:1【点评】本题考查了复数的运算法则、模的计算公式,考查了计算能力,属于基础题14已知数列an满足a1=1,(2n1)an+1=2(2n+1)an,则a6=352【考点】数列递推式【专题】点列、递归数列与数学归纳法【分析】根据数列的递推公式,利用累积法即可得到结论【解答】解:由(2n1)an+1=2(2n+1)an,得,则=2511=352故答案为:352【点评】本题主要考查数列的递推公式的应用,利用累积法是解决本题的关键,考查学生的计算能力,是中档题15如图,已知正方形abcd的边长为2,点e为ab的中点以a为圆心,ae为半径,作弧交ad于点f若p为劣弧上的动点,则的最小值为52【考点】平面向量数量积的运算【专题】平面向量及应用【分析】首先以a为原点,直线ab,ad分别为x,y轴,建立平面直角坐标系,可设p(cos,sin),从而可表示出,根据两角和的正弦公式即可得到=52sin(+),从而可求出的最小值【解答】解:如图,以a为原点,边ab,ad所在直线为x,y轴建立平面直角坐标系,则:a(0,0),c(2,2),d(0,2),设p(cos,sin);(cos,2sin)=(2cos)(cos)+(2sin)2=52(cos+2sin)=sin(+),tan=;sin(+)=1时,取最小值故答案为:52【点评】考查建立平面直角坐标系,利用向量的坐标解决向量问题的方法,由点的坐标求向量坐标,以及数量积的坐标运算,两角和的正弦公式16直线y=m与y=2x3及曲线y=x+ex分别交于a、b两点,则ab的最小值为2【考点】两点间的距离公式【专题】函数的性质及应用【分析】设a(x1,a),b(x2,a),则2x13=x2+ex2,表示出x1,求出|ab|,利用导数求出|ab|的最小值【解答】解:设a(x1,a),b(x2,a),则2x13=x2+ex2,x1=(x2+ex2+3),|ab|=|x2x1|=|(x2ex23)|,令y=(xex3),则y=(1ex),函数在(0,+)上单调递减,在(,0)上单调递增,x=0时,函数y的最大值为2,即有|ab|的最小值为2故答案为:2【点评】本题考查导数知识的运用,考查学生分析解决问题的能力,正确求导确定函数的单调性是关键三、解答题(本大题共6小题,共70分解答应写出文字说明、证明过程或演算步骤)17在等差数列an中,a1=1,其前n项和为sn=n2(1)求数列an的通项公式an;(2)若bn=,求数列bn中的最小项及取得最小项时n的值【考点】数列递推式【专题】等差数列与等比数列【分析】(1)由sn=n2,可得当n2时,an=snsn1,即可得出an(2)bn=,可得当n12时,数列bn单调递减;当n13时,数列bn单调递增即可得出【解答】解:(1)sn=n2,当n2时,an=snsn1=n2(n1)2=2n1当n=1时,上式也成立an=2n1(2)bn=,当n12时,数列bn单调递减;当n13时,数列bn单调递增而b12=b13当n=12或13时,数列bn取得最小项【点评】本题考查了递推关系的应用、数列的单调性,考查了推理能力与计算能力,属于中档题18已知向量=(sin2x+2,cosx),=(1,2cosx),设函数f(x)=(1)求f(x)的最小正周期与0,2上函数的单调递减区间;(2)在abc中,a、b、c分别是角a、b、c的对边,若a=,b=1,abc的面积为,求a的值【考点】正弦定理;平面向量数量积的运算;三角函数的周期性及其求法【专题】三角函数的图像与性质;解三角形;平面向量及应用【分析】(1)利用平面向量数量积的运算及三角函数恒等变换的应用化简可求f(x)=2sin(2x+)+3,由周期公式可求t,由2k+2x+2k+,kz,解得f(x)的在0,2上函数的单调递减区间(2)利用三角形面积公式可求c,根据余弦定理即可求得a的值【解答】(本题满分为12分)解:(1)=(sin2x+2,cosx),=(1,2cosx),f(x)=2sin(2x+)+3t=,由2k+2x+2k+,kz,解得:k,kz,f(x)的在0,2上函数的单调递减区间为:,6分(2)b=1,abc的面积为,解得c=2,a2=b2+c22bccosa=4+12=3,解得:a=12分【点评】本题主要考查了平面向量数量积的运算及三角函数恒等变换的应用,考查了正弦函数的图象和性质,三角形面积公式,余弦定理的应用,属于基本知识的考查19已知函数f(x)=x24x+2a+3,ar(1)若函数f(x)在1,1上有零点,求a的取值范围;(2)设函数g(x)=mx2m,mr,当a=0时,x11,4,总存在x21,4,使f(x1)=g(x2),求m的取值范围【考点】函数恒成立问题;二次函数的性质【专题】函数的性质及应用【分析】(1)由题意结合二次函数的性质可得,由此求得a的范围;(2)求出a=0时函数f(x)的值域a,然后分m0和m0求出函数g(x)的值域b,由题意可得ab,然后利用两集合端点值间的关系列不等式组得答案【解答】解:(1)由已知得,即,解得4a0;(2)当a=0时,函数f(x)在1,4上的值域为a=1,3当m0时,函数g(x)在1,4上的值域b=m,2m当m0时,函数g(x)在1,4上的值域b=2m,m由已知可得ab,当m0时,解得m;当m0时,解得m3综上可知,m或m3【点评】本题考查函数恒成立问题,考查了二次函数的性质,考查数学转化思想方法,是中档题20设abc的内角a,b,c的对边分别是a,b,c,已知a=,a=bcosc()求角c的大小;()如图,在abc的外角acd内取一点p,使pc=2,过点p作pmca于m,pncd于n,设线段pm,pn的长分别为m,n,pcm=x,且,求f(x)=mn的最大值及相应x的值【考点】三角形中的几何计算;两角和与差的正弦函数;三角函数的最值【专题】三角函数的求值;三角函数的图像与性质;解三角形【分析】()用正弦定理把a=bcosc化为sina=sinbcosc,再用三角形的内角和定理与三角恒等变换,求出c的值;()根据直角三角形中的边角关系,求出m、n,写出f(x)的解析式,利用三角函数求出f(x)的最大值以及对应的x的值【解答】解:()abc中,a=,a=bcosc,sina=sinbcosc,即sin(b+c)=sinbcosc,sinbcosc+cosbsinc=sinbcosc,cosbsinc=0;又b、c(0,),sinc0,cosb=0,b=,c=;()abc的外角acd=,pc=2,且pmca,pncd,pm=m,pn=n,pcm=x,;m=2sinx,n=2sin(x),f(x)=mn=4sinxsin(x)=4sinx(sincosxcossinx)=2sinxcosx+2sin2x=sin2x+(1cos2x)=sin2xcos2x+1=2sin(2x)+1;x,2x,2x,sin(2x)1,f(x)2+1=3,当2x=,即x=时,f(x)取得最大值3【点评】本题考查了三角形中的边角关系的应用问题,也考查了三角函数的恒等变换以及三角函数的图象与性质的应用问题,是综合性题目21已知椭圆=1(ab0)的中心为o,它的一个顶点为(0,1),离心率为,过其右焦点的直线交该椭圆于a,b两点(1)求这个椭圆的方程;(2)若oaob,求oab的面积【考点】直线与圆锥曲线的综合问题;椭圆的标准方程【专题】圆锥曲线的定义、性质与方程【分析】(1)通过离心率,结合椭圆的几何量的关系,求解即可得到椭圆的方程(2)判断直线ab与x轴不垂直,设直线ab的斜率为k,写出直线ab的方程为y=k(x1)与椭圆联立,设a(x1,y1),b(x2,y2),线段ab的中点为m(x0,y0),利用韦达定理结合oaob求出k的值,求出|ab|,求出直角oab斜边高为点o到直线ab的距离d,然后求解面积【解答】解:(1),依题意b=1,a2c2=1,a2=2,椭圆的方程为;(2)椭圆的右焦点为(1,0),当直线ab与x轴垂直时,a,b的坐标为,此时直线ab与x轴不垂直,设直线ab的斜率为k,则直线ab的方程为y=k(x1),与联立得(2k2+1)x24k2x+2k22=0,设a(x1,y1),b(x2,y2),线段ab的中点为m(x0,y0),oaob,koakob=0,x1x2+y1y2=0,x1x2+k(x11)k(x21)=,k2=2,|ab|2=4|om|2=,直角oab斜边高为点o到直线ab的距离d=,oab的面积为【点评】本题考查椭圆的标准方程的求法,直线与椭圆的综
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物流行业司机安全驾驶及货物运输效率考核表
- 2025年广东省公务员申论模拟试卷(含答案)
- 2026年纺织科技公司董事会研发项目审议管理制度
- 慢性白血病患者的心理状态评估与疏导策略
- 用户司机平台协议书
- 提供原材料合同范本
- 放电缆施工合同范本
- 父母房屋转让协议书
- 政府广告合同协议书
- 指标房定金合同范本
- 雨课堂学堂云在线《纪录片专题研究(浙江工商大学 )》单元测试考核答案
- 城市综合交通规划报告范文
- (2025年)《巩固拓展脱贫攻坚成果同乡村振兴有效衔接应知应会》测试题及答案
- 高性能芳纶纤维生产线项目可行性研究报告
- 2025年生产厂长年度工作计划
- 游泳协会水质管理员考试题库及答案
- 印刷任务应急预案(3篇)
- 环境适应性总结
- 高校金融学教学大纲及教案
- 基于认知的动机激发策略-洞察及研究
- 商场会员维护培训课件
评论
0/150
提交评论