海南省万宁市思源实验学校九年级数学下册 第26章《实际问题与二次函数》第一课时教案 新人教版.doc_第1页
海南省万宁市思源实验学校九年级数学下册 第26章《实际问题与二次函数》第一课时教案 新人教版.doc_第2页
海南省万宁市思源实验学校九年级数学下册 第26章《实际问题与二次函数》第一课时教案 新人教版.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第26章实际问题与二次函数第一课时教案教学目标:1、 通过探究实际问题与二次函数的关系,让学生掌握利用顶点坐标解决最大值(最小值)问题的方法。2、 通过学习和探究“矩形面积”、“销售利润”问题,渗透转化及分类的数学思想方法;3、 体会二次函数是一类最优化问题的重要数学模型,感受数学应用价值。教学重点:探究利用二次函数的最大值(最小值)解决实际问题的方法教学难点:如何将实际问题转化为二次函数的问题,并利用函数的性质进行决策教学方法:讲授法教具:黑板,多媒体教学过程设计:一、问题牵引问题1:现有60米的篱笆要围成一个矩形场地,(1) 若矩形的一边长为10米,它的面积是多少?(2) 若矩形的一边长为15米、20米、30米时,它的面积分别是多少?(3) 从上面两个问同学们发现了什么?200、225、200、矩形不存在;发现矩形的边长取值范围(去掉0,30两个端点)问题2:你能找到篱笆围成的矩形的最大面积吗?你是怎样找到的?设一边长为米,则另一边长为米,对应的矩形面积为平方米,根据题意可得, 即 即,当时,有最大值问题3:由矩形面积问题你有什么收获?讨论结果:(1)一般地,抛物线的顶点就是抛物线的最低(高)点,当时,二次函数有最小(大)值(2) 二次函数时现实生活中的模型,可以用来解决实际问题。(3) 利用函数的观点来认识现实生活中的模型,可以用来解决实际问题。练习强化1、 张大爷要围成一个矩形花圃,花圃的一边利用足够长的墙,另三边用总长为32米的篱笆恰好围成,围成的花圃是如图所示的矩形,设ab边的长为米,矩形的面积为平方米(1) 求与之间的函数关系式(不写出自变量的取值范围)(2) 当为何值时,有最大值?并求出其最大值。2、 例子解析例题:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?问题1:题目中有几种调整价格的方法?两种,涨价和降价问题2:如何表示每星期售出商品的利润?通俗的说,就是赚的钱。对每星期来说,利润取决于每件的利润和销售量,即每星期售出商品的利润=每件的利润*每星期的销售量.问题3:涨的价、降的价有没有限制?若有的话如何确定它们的取值范围?讨论结果:有,由于”每涨价1元,每星期少卖出10件“,原来每星期可卖300件,因此,最多只能涨300/10=30,即 ;又进价为40元,先售价为60元,现利润为每件60-40=20元,即设每件降价x元,每星期售出商品利润y元 当时,y的最大值为综合所知,应每件为65元时,每星期的利润最大,最大为6250元。涨价(由学生完成)问题4:由例题的学习,同学们能否总结出解决此类最优化问题的解决方法?讨论结果:基本步骤:(1)、设自变量 (2)、建立函数的解析式 (3)、确定自变量的取值范围 (4)、根据顶点坐标公式或配方法求出最大值或最小值(在自变量的取值范围内)3、 练习巩固1、 某商品的进价为每件40元,售价为每件50元,每个月可卖出210件,如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元)。设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元。(1) 写出y与x的函数关系式并直接写出自变量x的取值范围(2) 每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3) 每件商品的售价定为多少元时,每个月的利润恰为2200元?解:(1) (2)当所以,当售价定为每件55或56元时,每个月的利润最大,最大的月利润是2400元(3) 当所以售价定为每件51或60元时,每个月的利润为2200元4、 反思小结1. 一般地,抛物线的顶点就是抛物线的最低(高)点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论