毕业设计资料.doc_第1页
毕业设计资料.doc_第2页
毕业设计资料.doc_第3页
毕业设计资料.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一:环糊精 定义:在环糊精糖基转移酶作用下,由淀粉(主要是支链淀粉)所生成的-1,4-糖苷键连接、首尾相连、由612个葡萄糖单位组成的寡糖。有催化特性,并可与一些离子或有机小分子形成包含络合物。 环糊精简介:环糊精(Cyclodextrin,简称CD)是直链淀粉在由芽孢杆菌产生的环糊精葡萄糖基转移酶作用下生成的一系列环状低聚糖的总称,通常含有612个D-吡喃葡萄糖单元。其中研究得较多并且具有重要实际意义的是含有6、7、8个葡萄糖单元的分子,分别称为alpha -、beta -和gama -环糊精(图1)。根据X-线晶体衍射、红外光谱和核磁共振波谱分析的结果,确定构成环糊精分子的每个D(+)- 吡喃葡萄糖都是椅式构象。各葡萄糖单元均以1,4-糖苷键结合成环。由于连接葡萄糖单元的糖苷键不能自由旋转,环糊精不是圆筒状分子而是略呈锥形的圆环。 由于环糊精的外缘(Rim)亲水而内腔(Cavity)疏水,因而它能够象酶一样提供一个疏水的结合部位,作为主体(Host)包络各种适当的客体(Guest),如有机分子、无机离子以及气体分子等。其内腔疏水而外部亲水的特性使其可依据范德华力、疏水相互作用力、主客体分子间的匹配作用等与许多有机和无机分子形成包合物及分子组装体系,成为化学和化工研究者感兴趣的研究对象。这种选择性的包络作用即通常所说的分子识别,其结果是形成主客体包络物(Host-Guest Complex)。环糊精是迄今所发现的类似于酶的理想宿主分子,并且其本身就有酶模型的特性。因此,在催化、分离、食品以及药物等领域中,环糊精受到了极大的重视和广泛应用。由于环糊精在水中的溶解度和包结能力,改变环糊精的理化特性已成为化学修饰环糊精的重要目的之一。环糊精(化学式: C14H8O2),是一种安特拉归农类化学物。环糊精的复合物存在于天然,也可以人工合成。工业上,不少染料都是以环糊精作基体;而不少有医疗功效的药用植物,如芦荟,都含有环糊精复合物。例如芦荟的凝胶当中的环糊精复合物,有消炎、消肿、止痛、止痒及抑制细菌生长的效用,可作天然的治伤药用。此外,利用环糊精的环糊精法是生产双氧水的最佳方法。 结构:多个分子以-1,4-糖苷键首尾相连而成。在空间呈螺旋状结构。、-环糊精分别是6,7,8个D(+)吡喃型葡萄糖组成的环状低聚物,其分子呈上宽下窄、两端开口、中空的筒状物,腔内部呈相对疏水性,而所有羟基则在分子外部。 环糊精的改性和应用研究进展环糊精的基础研究早在30年代开始,并证实了环糊精能形成包埋复合物,但直 到二十世纪五十年代环糊精包埋复合物的研究才趋于成熟,并且发现环糊精在一些反应中具有催化作用。1950年以来,对环糊精生成酶、制取方法、环糊精的物理化学性质和研究逐渐增多,提出了许多新见解。特别是F. Cramer 首先阐明了环糊精能稳定色素,继而又发现能形成包络物,从而在食品、医药、化妆品、香精等方面的应用不断扩大,其相关领域研究工作也随之活跃起来。1960 年日本首次进行了环糊精的中试生产,此后三十年内环糊精才真正进入了工业化生产阶段。目前,日本在环糊精生产与应用方面居世界领先水平,是环糊精的最大出口国,我国也是其进口国之一。近年来,由于环糊精的酶被逐渐发现以及工业技术、工艺的不断完善和应用领域的扩大,已成为紧俏的化工产品。 环糊精的结构与性质环糊精分子具有略呈锥形的中空圆筒立体环状结构,在其空洞结构中,外侧上端(较大开口端)由C2和C3的仲羟基构成,下端(较小开口端)由C6的伯羟基构成,具有亲水性,而空腔内由于受到C-H键的屏蔽作用形成了疏水区。它既无还原端也无非还原端,没有还原性;在碱性介质中很稳定,但强酸可以使之裂解;只能被- 淀粉酶水解而不能被- 淀粉酶水解,对酸及一般淀粉酶的耐受性比直链淀粉强;在水溶液及醇水溶液中,能很好地结晶;无一定熔点,加热到约200开始分解,有较好的热稳定性;无吸湿性,但容易形成各种稳定的水合物;它的疏水性空洞内可嵌入各种有机化合物,形成包接复合物,并改变被包络物的物理和化学性质;可以在环糊精分子上交链许多官能团或将环糊精交链于聚合物上,进行化学改性或者以环糊精为单体进行聚合。 编辑本段环糊精的改性由于-CD分子空洞孔隙较小,通常只能包接较小分子的客体物质,应用范围较小;-CD的分子洞大,但其生产成本高,工业上不能大量生产,其应用受到限制;-CD的分子洞适中,应用范围广,生产成本低,是目前工业上使用最多的环糊精产品。但-CD的疏水区域及催化活性有限,使其在应用上受到一定限制。为了克服环糊精本身存在的缺点,研究人员尝试对环糊精母体用不同方法进行改性,以改变环糊精性质并扩大其应用范围。目前国内外改性环糊精研究已有长足进展,取得了很多成果。 所谓改性就是指在保持环糊精大环基本骨架不变情况下引人修饰基团,得到具有不同性质或功能的产物,因此也被称为修饰,改性后的环糊精也叫环糊精衍生物。 环糊精进行改性的方法有化学法和酶工程法两种,其中化学法是主要的。化学改性是利用环糊精分子洞外表面的醇羟基进行醚化、酯化、氧化、交联等化学反应,能使环糊精的分子洞外表面有新的功能团。反应程度用取代度即平均每个葡萄糖单位中羟基被取代的数量表示。酶工程法是利用环糊精葡萄糖基转移酶(CGTase)或普鲁蓝酶等将单糖或低聚糖结合到环糊精上,制成支链环糊精(歧化环糊精) 的方法。 在环糊精发现不久,人们就对环糊精衍生物进行了研究,合成了许多含有各种功能基的衍生物,包括环糊精醚衍生物,环糊精酯衍生物,桥联环糊精,环糊精交联聚合物,与高分子相连环糊精,嵌入功能基团改性环糊精等。 编辑本段环糊精的应用研究环糊精在食品工业上的应用 利用环糊精的疏水空腔生成包络物的能力,可使食品工业上许多活性成分与环糊精生成复合物,来达到稳定被包络物物化性质,减少氧化、钝化光敏性及热敏性,降低挥发性的目的,因此环糊精可以用来保护芳香物质和保持色素稳定。环糊精还可以脱除异味、去除有害成分,如去除蛋黄,稀奶油等食品中的大部分胆固醇;它可以改善食品工艺和品质,如在茶叶饮料的加工中,使用-环糊精转溶法既能有效抑制茶汤低温浑浊物的形成,又不会破坏茶多酚、氨基酸等赋型物质,对茶汤的色度、滋味影响最小。此外,环糊精还可以用来乳化增泡,防潮保湿,使脱水蔬菜复原等。 二:纤维素定义:葡萄糖分子通过-1,4-糖苷键连接而形成的葡聚糖。通常含数千个葡萄糖单位,是植物细胞壁的主要成分。定义:葡萄糖分子通过-1,4-糖苷键连接而形成的葡聚糖。通常含数千个葡萄糖单位,是植物细胞壁的主要成分。简介:1溶解性 :常温下,纤维素既不溶于水,又不溶于一般的有机溶剂,如酒精、乙醚、丙酮、苯等。它也不溶于稀碱溶液中。因此,在常温下,它是比较稳定的,这是因为纤维素分子之间存在氢键。 2纤维素水解 在一定条件下,纤维素与水发生反应。反应时氧桥断裂,同时水分子加入,纤维素由长链分子变成短链分子,直至氧桥全部断裂,变成葡萄糖。 3纤维素氧化 纤维素与氧化剂发生化学反应,生成一系列与原来纤维素结构不同的物质,这样的反应过程,成为纤维素氧化。(引自郭莉珠档案保护技术)纤维素大分子的基环是D-葡萄糖以-1,4糖苷键组成的大分子多糖,分子量约500002500000,相当于30015000个葡萄糖基脱水葡萄糖,其分子式为:(C6H10O5)n, 其化学组成含碳44.44%、氢6.17%、氧49.39%。由于来源的不同,纤维素分子中葡萄糖残基的数目,即聚合度(DP)在很宽的范围。分子式可写作(C6H10O5)n。是维管束植物、地衣植物以及一部分藻类细胞壁的主要成分。醋酸菌(Acetobaeter)的荚膜,以及尾索类动物的被囊中也发现有纤维素的存在,棉的种子毛是高纯度(98%的纤维素。所谓-纤维素(cellulose)这一名称系指从原来细胞壁的完全纤维素标准样品用17.5%NaOH不能提取的部分。-纤维素(-cellulose)、-纤维素(-cellulose)是相应于半纤维素的纤维素。虽然,-纤维素通常大部分是结晶性纤维素,-纤维素,-纤维素在化学上除含有纤维素以外,还含有各种多糖类。细胞壁的纤维素形成微纤维。宽度为1030毫微米,长度有的达数微米。应用X线衍射和负染色法(negative染色法),根据电子显微镜观察,链状分子平行排列的结晶性部分组成宽为34毫微米的基本微纤维。推测这些基本微纤维集合起来就构成了微纤维。纤维素能溶于Schwitzer试剂或浓硫酸。虽然不易用酸水解,但是稀酸或纤维素酶可使纤维素生成D-葡萄糖、纤维二糖和寡糖。在醋酸菌中有从UDP葡萄糖引子(primer)转移糖苷合成纤维素的酶(cellulose synthase(UDPformingEC24112)。在高等植物中已得到具有同样活性的颗粒性酶的标准样品。此酶通常是利用GDP葡萄糖(cellulose synthase(GDP forming) EC24129),在由UDP葡萄糖转移的情况下,发生1,3键的混合。微纤维的形成场所和控制纤维素排列的机制还不太明瞭。另一方面就纤维素的分解而言,估计在初生细胞壁伸展生长时,微纤维的一部分由于纤维素酶的作用而被分解,成为可溶性。纤维素不溶于水和乙醇、乙醚等有机溶剂,能溶于铜氨Cu(NH3)4(OH)2溶液和铜乙二胺NH2CH2CH2NH2Cu(OH)2溶液等。水可使纤维素发生有限溶胀,某些酸、碱和盐的水溶液可渗入纤维结晶区,产生无限溶胀,使纤维素溶解。纤维素加热到约150时不发生显著变化 ,超过这温度会由于脱水而逐渐焦化。纤维素与较浓的无机酸起水解作用生成葡萄糖等,与较浓的苛性碱溶液作用生成碱纤维素,与强氧化剂作用生成氧化纤维素。 4柔顺性 纤维素柔顺性很差,是刚性的,因为(1)它分子有极性,分子链之间相互作用力很强;(2)纤维

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论