毕业设计英文翻译.doc_第1页
毕业设计英文翻译.doc_第2页
毕业设计英文翻译.doc_第3页
毕业设计英文翻译.doc_第4页
毕业设计英文翻译.doc_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

知识不仅是指课本的内容,还包括社会经验、文明文化、时代精神等整体要素,才有竞争力,知识是新时代的资本,五六十年代人靠勤劳可以成事;今天的香港要抢知识,要以知识取胜郑州航空工业管理学院英 文 翻 译 2009届机械设计制造及其在自动化专业0906963班级姓 名 赵建伟 学号 090696328指导教师 李明 职称 教授 二一 一 年 四 月 六 日译文: 原文出自 IDR INDUSTRIAL DIAMOND REVIEW 4/2001 volume 61 金刚钻的工业化运用一个程序一般需要50至70美网在这样的切割频率下工具的负载量是比较低的而欧洲这样的程序下金刚钻的模型是完全不一样的!在我国在这样的程序下普遍金刚钻工具在非常自由的切割条件下产品是不规则的易碎的微粒!在欧洲因为各种因素情况是不同的因为欧洲的生活水平远高于我国因此他们的劳动力成本也要高为了使欧洲最大的石材生产商保持竞争力他们必须要把注意力从原材料转移到生产的有效输出和最大化输出这就要求产品从原材料到成品的生产过程中尽可能减小能源的耗费和不必要的浪费该方法需要机床技术能够高速运作和先进的加工可进行可靠的长时间持续的无人值守操作在20世纪90年代在机械和金刚石工具技术方面有很大的发展使产量增加和降低生产成本如果我们对比一下欧洲和中国生产标准我们可以看到在机器和工具的生产方面中欧存在很大的差距在欧洲制造这些瓷砖几乎是完全自动的因为高效率的机械设计和自动处理设施最新一代的锯床这种应用能够使用主轴高达80分直径锯片机器和工具的设计在达到下列的参数下切割率是可以更快的?表面速度: - 25 - 35m / s?切削深度: -1mm?大桥速度: - 17m/min?切割速度: - IPOcm/5min或1m/h每个刀片?机输出: - 640m/5day( 8小时每天)在这样的条件下生产浪费减至最低产量确更高通常情况下在欧洲刀片会产生10mm的缺口而中国有12mm并且相对于中国12-15mm的切面的切口欧洲只有10-12mm的切口在实现生产最大化材料处理和优化加工时间也是关键厚片的切据被自动转移到自动的二次加工在这样精确的切割率下对于金刚钻工具的要求是很高的在程序控制下型号和尺寸与中国的标准下是有很大不同的由于切割率相对高很多最通常的尺寸是30-50切割率高意味着工具的负载量也高金刚钻的性质也会不一样!金刚钻的要求一般都是统一的强大块状颗粒这是使在长时间的高负荷下保持高产量钻石花岗岩加工为了进一步增加生产力各个领域都集中研究石材加工作业除了改善物质产量和减少浪费成本钻石生产商机床制造商和钻石工具制造商增加大量的投以增加产出的机器和工具组合有些致力于大理石加工设备在欧洲最快的花岗岩加工设备的使用水平只相当于4 大理石加工业一般情况下因为在热和机械超负荷的金刚石工具条件限制下在处理花岗岩切削深度大于25毫米往往不能够达到的一个由欧洲合作伙伴组成的工业钻石生产组织由一个金刚石工具制造商机床制造商生产锯机构组成的研究机构开展了一项石材加工的研究计划重点放在以全面的方式对待这个问题并考虑到技术经济和环境方面的考虑该项计划的一个主要目标是开发一个系统元件可以是深度切割的范围扩大到100 - 300毫米所需的组件将是一个高效率环形金刚石锯片和改善润滑系统提供的工具工件接口以保持一个稳定的削减长时间因为这是必不可少的高度自动化的进程这项研究工作分为两个阶段:1实验室测试以获得基本的信息(材料性质进程温度和振动)为基础实现必要的改进机器和工具的设计2在第一阶段的数据基础上开发工具及机器部件(锯片部分润滑和修整系统)该项目设计的关键因素之一是模型和小型工具的使用以便观察切割工程中工具的压力温度震动性等当使用小规模的工具重要的是系统的执行是符合充分大规模的工业应用为了克服这个困难许多专家提出了各种锯模式和在系统中通常被认可的两个关键变量切割速度和切割深度使用这些参数和几何信息的工具有可能提出一个简化模型公式相当于切屑厚度产生的圆形切割作业使用这种类型的公式有可能重现类似的条件和力量通常会运用于工业应用深锯切下的温度带和力测量小规模的实验室试验来检测进行深锯在切削区和切削力产生的热量.这一信息是必要的以便确定加工过程中的润滑油的比例并预测金刚石工具承受的压力该模型工具的详细信息是基于直径400毫米圆锯在锯片生产过程中的抗压性一克拉包含660+/-30粒切割一个中等分类的意大利花岗岩和更难的机器印度红色花岗岩因为他代表着最精确的工作指数在切割过程中切割的深度保持在90mm 这些条件将订单以380cm/min进行工业设置温度的测试是一直需要的当切割率增高时温度也是越来越高的但是在达到最快的速度是温度也是不会超过200 C为了机器最后的设计和完整的机器尺寸压力也是要测量的通常是用测力仪测量常温和阶段性温度压力的分析和钻石的等级决定于钻石在那个操作系统下切割的这些是很关键的为了保持一个稳定的钻石的耐磨系数和调整钻石的凹凸深锯切花岗石基于第一阶段收集的数据不同的深锯过程决定的设计要求不同的设备关于金刚石刀片的时机特备强调以下设备的设计:工具的详细说明和制造的环境必须确保磨削切屑厚度促进充分材料去除和钻石凸出根据深锯条件芯片厚度要是最小主要关切的领域是如果切削参数是极其严重的则切屑厚度可能超过钻石凸出高度在这种情况下可能发生灾难性的失败因为钻石颗粒将展出过度断裂导致间隙不足工件和债券矩阵这将导致正常的力量增加并导致灾难性故障的工具其他方面的项目突出各种要求机器稳定性润滑驱动器等这些将被认为是最后组装深锯床实地测试一系列用改进的块切割大规模的试验者其目的是研究许多不同方面的运作如机械振动和噪声分析润滑的切割操作测量的表面纹理和平行的锯瓷砖地带以及行为的金刚石工具根据输出的第1阶段各种性能标准已被确定为关键的系统是成功的显然工具的性能是一个关键领域印度红花岗岩被选为工件材料因为它代表一个很据代表性的的材料进行处理测试进行时普遍接受的工具的性能标准的刀片服务器上使用的3分多的刀片系统降低瓷砖是在该地区的九平方米为此目标工具的性能被选为九十零平方米这些成果的实地试验表明深切割的条件下有可能产生一个加工系统可以提高工作效率和创造降息秩序在这种情况下没有出现工具偏差表1 Tool Number123DiamondType IType IIType IIDiamond Size30/4035/6035/60Concentration303035Bond typeCobalt 1Cobalt 2Cobalt 2Core Thickness5mm5mm5mm表2叶片加工参数及规格切割深度 (mm)100边缘速率 (m/s)30-42Feed Rate (m/min)0.38切割率 (cm2 /min)380刀口直径 (mm)1000颗粒数70高度 (mm)10长度 (mm)23宽度 (mm)6.8对传统的块切割机的工作条件下切割的深度是12m/mm速度是120cm/7min各种分析测试表明在所有情况下钻石颗粒在其操作系统下会保持一个表面的光滑切割深度在300mm时传统操作下的材料消耗是9.5倍并且工具的寿命会很急剧下降深锯切的前景这些测试结果预示着现阶段超强度投入的人造金刚石的无限前景当我们转移注意力到加工过程制造工具的优化参数和工具的设计同步发展一个有别于传统的创造性的生产系统是可以产生的金刚石绳在石材加工中的使用前景在天然石材业金刚石绳锯被广泛应用于已加工和提取花岗岩和大理石材料在欧洲金刚石绳被认为是标准的大理石采石工具并且在开采花岗岩方面取得重大进展金刚石绳使用也越来越多在加工大理石和花岗岩也被广泛应用在90年代初固定钢丝锯床的使用仅限于少数石材加工者他们主要用它来将石块切成锯片此后不断涌现各种大量多样的具有重要意义的技术图7 工具技术含量的发展在1997年一个全新的商业化的控制线锯数控机概念被引出能应用于复杂的建筑切割 在汇集了最新的概念机床机床控制技术和国家最先进的金刚石工具等一系列的设备的安装处理各种不同的石料必须要投入高额的成本采用这种金刚石线这种技术克服了技术和商业障碍使得建筑师和设计师能够实现在内部和外部装饰石材项目的设计生产大尺寸超薄花岗岩板材尺寸在10 - 40毫米也只能使用传统的方法因为车身设计和切缝厚度的限制圆形锯也是不可行的金刚石绳代替过时的技术被提出了很多年但是直至1997年一个切实可行的商业操作的金刚钻工具才问世如图8图8 CNC 控制锯机 图9 多线锯机本机特别设计利用高规格的金刚石线取代传统的研磨框锯机该机器采用10根直径8毫米钻石电线并能处理量相当于两个常规磨料框架锯能处理的加工另外它还能改进石头表面纹理减少废弃物数量的物质和能量改进表面纹理仅意味着随后磨削加工时间可减少约20金刚石绳的应用促使该工具取得了很大的成功其中有两个重要的因素第一直径线直接有助于工件材料利用率最开始的金刚石绳花岗岩锯的直径是10-12mm现在的直径是6-8mm.第二金刚石绳的实际操作这个可以从两个方面加以说明第一金刚石线必须实现切割速度是可持续的长期的也必须足够的生产能力来最大限度地带来其他好处如降低能耗和减少废料 为了发挥这所有的有点钻石技术不断的进步最早的电镀金导线用于不规则的大理石和中等强度易于切削的大理石现在的金刚石绳用于复杂的高强度的人造金刚石的生产Debid在过去的十年中一直致力于金刚石绳的研究研究侧重于应用的细节特别是相互作用的工具工件设备的设计Debid集中研究在产品尺寸强度热稳定性上满足市场需求在英国Debid的金刚石绳的研究被广泛采纳锯床的电线已被配置为模拟附近可能遇到的条件在正常的生产环境图 10 Debid wire 实验锯机在过去10年中产生的数据现实很多的意见和趋势都得到了认可其中的一些进步不是在工具的应用上而是更多的金刚石绳的生产最早的金刚石绳应用于大理石的电镀紧接着应用于花岗岩的加工 现在最新的发展是采用热等静压生产粉末冶金金刚石绳也盖面了烧结部分的密度和连贯性!最后出现了采用单层和多层钎焊金刚石工具 图9 加强钻石粘附性因此工具的格局会给金刚石绳生产带来巨大的变化也节约成本 编制加工数据反映在固定的电源下工具的切割率和寿命影响工具性能的因素主要有工件选择和操作参数在十年期间的观察切割速度产生针对这种应用一直固定在该地区的170 - 250cm/min 图 12 图示典型的花岗岩锯丝的发展这组数据显示金刚石绳被广泛应用金刚石绳一直的应用一直保持在这样的增长率因为它的应用较低了成本延长了工具的使用寿命高速切削高速切削加工是面向21世纪的一项高新技术它以高效率、高精度和高表面质量为基本特征在汽车工业、航空航天、模具制造和仪器仪表等行业中获得了愈来愈广泛的应用并已取得了重大的技术经济效益是当代先进制造技术的重要组成部分高速切削是实现高效率制造的核心技术工序的集约化和设备的通用化使之具有很高的生产效率可以说高速切削加工是一种不增加设备数量而大幅度提高加工效率所必不可少的技术高速切削加工的优点主要在于:提高生产效率、提高加工精度及降低切削阻力 有关高速切削加工的含义目前尚无统一的认识通常有如下几种观点:切削速度很高通常认为其速度超过普通切削的5-10倍;机床主轴转速很高一般将主轴转速在10000-20000r/min以上定为高速切削;进给速度很高通常达15-50m/min最高可达90m/min;对于不同的切削材料和所釆用的刀具材料高速切削的含义也不尽相同;切削过程中刀刃的通过频率(Tooth Passing Frequency)接近于机床刀具工件系统的主导自然频率(Dominant Natural Frequency)时可认为是高速切削可见高速切削加工是一个综合的概念1992年德国Darmstadt工业大学的H. Schulz教授在CIRP上提出了高速切削加工的概念及其涵盖的范围如图1所示认为对于不同的切削对象图中所示的过渡区(Transition)即为通常所谓的高速切削範围这也是当时金属切削工艺相关的技术人员所期待或者可望实现的切削速度高速切削加工对机床、刀具和切削工艺等方面都有一些具体的要求下面分别从这几个方面阐述高速切削加工技术的发展现状和趋势现阶段为了实现高速切削加工一般釆用高柔性的高速数控机床、加工中心也有釆用专用的高速铣、钻床这些设备的共同之处是:必须同时具有高速主轴系统和高速进给系统才能实现材料切削过程的高速化高速切削与传统切削最大的区别是机床刀具工件系统的动态特性对切削性能有更强的影响力在该系统中机床主轴的刚度、刀柄形式、刀长设定、主轴拉刀力、刀具扭力设定等都是影响高速切削性能的重要因素 在高速切削中材料去除率(Metal Removal RateMRR)即单位时间内材料被切除的体积通常受限于机床-刀具-工件工艺系统是否出现颤振因此为了满足高速切削加工的需求首先要提高机床动静刚度尤其是主轴的刚度特性现阶段高速切削之所以能够成功一个很关键的因素在于对系统动态特性问题的掌握和处理能力为了更好地描述机床主轴的刚度特性工程上提出新的无量纲参数-DN值用以评价机床的主轴结构对高速切削加工的适应性所谓DN值即主轴直径与每分钟转速之积新近开发的加工中心主轴DN值大都已超过100万为了减轻轴承的重量还釆用了比钢制品要轻得多的陶瓷球轴承;轴承润滑方式大都釆用油气混合润滑方式在高速切削加工领域目前已开发空气轴承和磁轴承以及由磁轴承和空气轴承合并构成的磁气/空气混合主轴 在机床进给机构方面高速切削加工所用的进给驱动机构通常都为大导程、多头高速滚珠丝槓滚珠釆用小直径氮化硅(Si3N4)陶瓷球以减少其离心力和陀螺力矩;釆用空心强冷技术来减少高速滚珠丝槓运转时由于摩擦产生温升而造成的丝槓热变形 结论我们可以看到尽管最近的经济处于低迷的状态但石材加工业却稳步持续增长毫无疑问会带动全世界的石材的采集和加工业在这些国家中经济技术方面的差别对于金刚钻的生产提供的设备工具也会有不同欧洲国家在努力保持其成本竞争力的同时正在努力致力于开发技术改善工件的使用率表现在金刚石绳在采石方面的应用高精密的机器设备和多线锯的发展生产力的提高最明显的优势表现在成本的降低本文阐述了两个关键的运用领域金刚钻的生产在合适的机械和控制的一体化下生产力得到极大的提高机械工具的科技化和不断发展的新的人造金刚钻的组合极大的促进了生产力的提高和降低了成本从而保持天然石材作为一个符合成本效益的建筑材料. 参考文献:1 World Stone Industry Reports. Societa Editrice Apuana 1999.2 Marmo Macchine International 1999 26/99. The Stone Sectors Magnificent Seven.3 Roc Maquina June 1999 p144 Chinese Firms Focus on Quality.4 Synthesis Report of a European Commission Research program funded under the Brite Euram II umbreila entitled Development of a System for the Deep Sawing of Granite November 1998.5 W. Ertingshausen Cutting Granite with Diamond Cut-off Blades PhD thesis. University of Hanover 1984.6 An Indicator System for Saw Grit R Davis etal 1996/97.7 Four-Axis Wire Saw for Profiling Stone R Davis IDR 4/97 pi 12.8 Falcon 600 - Wired for Success in Granite Slabbing IDR 2/97 p37.9 Brazed Beads with a DiamondGrid for Wire Sawing IDR 4/98. p134. 附件:(外文资料原文)DE BEERS INDUSTRIAL DIAMONDSSHANNON CO. CLARE IRELAND TELEPHONE +35361471655 FAX +35361471201 WEB www.debid.ie PrennaDia and the name Debid are Trade Marks of the De Beers industrial Diamonds group of companies A common size used in this application would be 50 to 70 US mesh. At these cutting rates the loads the tool experiences are low and as a result the properties of the diamond are quite different to those required for a similar application in Europe. In China the diamond types typically required for this application are very irregular friable particles which enable a tool to be produced which remains very free cutting under the prevailing conditions In Europe the picture is different because of a number of factors. The standards of living are much higher than in China and as a result the European labour force commands a much higher labour cost. In order for Europes leading stone producers to be competitive they have focused their attentions on working practices which optimise productivity output and maximise yield from their raw materials. These methods focus on transforming the quarried block to finished product as efficiently as possible while consuming low levels of energy and minimising unnecessary waste. The methods require machine tool technology capable of high speed operation and sophisticated tooling which can perform reliably over long periods of sustained unattended operation. During the 1990s there were many developments in machine and diamond tool technology which facilitated increased production rates and contributed significantly to a reduction in stone processing costs. If we draw comparisons between the technology available in Europe for the production of modular tiles with that available in China we can see an enormous divide both in machine and tool technology and in productivity. In Europe the manufacture of these tiles is almost completely automated due to efficient machine design and automatic handling facilities. The latest generation of sawing machines for this application is capable of using a spindle with up to eighty 1m diameter saw blades. The design of the machine and tool allows faster cutting rates at the typical parameters shown below. ? Surface Speed:- 25 - 35m/s. ? Depth of cut:- 1mm ? Bridge Speed:- 17m/min ? Cutting rate:- IPOcm/5min or1m/h per blade ? Machine output:- 640m/5day (8hr day)In this type of environment wastage must also be minimised thus maximising workpiece yield. Typically blades would be generating kerf widths below 10mm compared with 12mm in China and a narrower tile section of approximately 10-12mm compared with 12-15mm in China. Material handling and optimising machining time are also key in achieving maximised productivity so the slabs are sawn from the block in situ and automatically transferred to an automated machine for secondary processing. With these extreme cutting rates the demands placed upon the diamond tools are high and as a result the type and size of abrasive commonly seen in this type of application are very different to those commonly used in China. As the cutting rates are much higher the abrasive size is correspondingly coarser the most common size used in this application being in the region of 30 US mesh to 50 US mesh. At the higher cutting rates the corresponding loads the tool experiences are higher and as a result the properties of the diamond are quite different. The diamond types typically required are very uniform strong blocky particles which enable a tool to be produced which will remain very free cutting at these high rates of productivity but still perform consistently over long periods of sustained use at high loads.The Future of Diamond in Granite Processing In attempts to make further increases inproductivity various areas of research have centred on improving the economics of the stone processing operation. Apart from improving material yields and reducing wastage costs a great deal of investment has been made by diamond producers machine tool manufacturers and diamond tool makers in order to increase the output of the machine and tool combination. One such area 4 has looked at achieving some of the production capabilities of marble processing machines. The fastest granite processing machines in use in Europe are currently only capable of productivity levels equal to about 4% of those achievable in the marble processing industry. In general cutting depths greater than 25mm tend not to be possible when processing granite as this results in thermal and mechanical overload of the diamond tool. A consortium of European partners consisting of an industrial diamond producera diamond tool maker machine tool manufacturer a saw body producer and research institutes embarked on a research programme to bring a new dimension to stone processing. Emphasis was placed upon a holistic approach to the problem and took into account technological economic and environmental considerations. A primary objective of this programme was to develop system components which would enable sawing to be conducted under deep cutting conditions i.e. cutting depths ranging from 100mm - 300mm. The required components would be a high efficiency circular diamond saw blade and an improved system for providing lubrication at the tool-workpiece interface in order to maintain a stable cut over long periods of time as this is essential for a highly automated process. The research work was split into two phases: 1 Laboratory testing in order to obtain the fundamental information (material properties process forces temperatures and vibrations) as the basis for achieving the necessary improvements in machine and tool design. 2 Development of tool and machine components (saw segments lubrication and dressing systems) on the basis of the data from phase 1. One of the key elements of the project design in phase 1 was the use of model or small scale tools in order to investigate process forces temperatures at the workpiece - tool interface and vibration characteristics. When using small scale tools it is vital that the behaviour of the system is compatible with the full scale industrial application. To overcome this various sawing models have been proposed by many authors and two key variables in the system are commonly recognised the cutting speed (v) and the depth of cut (a). Using these parameters and information regarding the geometry of the tool it was possible to propose a simplified model formula for the equivalent chip thickness generated in the circular sawing operation.Using this type of formula it is possible to reproduce similar conditions and forces that would normally be encountered in the industrial application. Temperature Generation and Process Force Measurement in Deep Sawing Conditions Small scale laboratory tests were scheduled to conduct deep sawing trials in order to measure the heat generated at the cutting zone and the cutting forces. This information would be necessary in order to determine the lubrication requirements of the full scale prototype and also predict some of the forces the diamond tool would be subjected to during the machining process. The specification of the model tool was based upon a 400mm diameter circular saw tipped with saw segments manufactured using a strong wear resistant cobalt bond. A premium strength diamond was used in a mesh size of 30/40 which nominally contains 660 +/- 30 particles per carat. Sawing was conducted using a medium classification of Italian granite followed by a more difficult to machine Indian Red granite as it represented one of the most extreme workpieces. During the cutting trials the depth of cut remained constant at 90mm and the traverse rates were varied to yield cutting rates of WOcmVmin at the mildest end and GOOcmVmin at the harshest end. These conditions would be of the order of380cm2/min to iOOOcmVmin in the industrial set-up. Temperature measurements were obtained and as would be expected as the cutting rate increased the temperature generated increased but even at the highest speeds the maximum temperatures generated were still less than 200C. Process forces were measured using a dynamometer in order to measure the normal and tangential forces in order to assist in the development of the machine design and the final full size tool specification. Analysis of these forces and examination of the diamond wear progression 6 would then determine at which position the diamond was operating within its window of operation. This was critical in order to maintain a steady state of diamond wear and adequate diamond protrusion to facilitate chip removal.Process Requirements for the Deep Sawing of Granite Based upon the information gathered in phase 1 certain process requirements relating to different design aspects of the deep sawing process were determined. With regard to the design of the diamond blade observations highlighted the following tool design requirements. The tool specification and machining conditions must ensure that the grinding chip thickness facilitated adequate material removal and diamond protrusion. Under the deep sawing conditions it was unlikely the chip thickness would be too small. The main area of concern was that if the cutting parameters were extremely severe then the chip thickness could exceed the diamond protrusion height. In this instance catastrophic failure could occur because the diamond particles would exhibit excessive fracture leading to insufficient clearance between workpiece and bond matrix. This would cause the normal forces to increase and result in cat

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论