




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数的零点【教学目标】知识目标:理解函数零点的定义以及方程的根与函数的零点之间的联系,了解“函数零点存在” 的判断方法,对新知识加以应用.能力目标:渗透由特殊到一般的认识规律,提升学生的抽象和概括能力,领会数形结合、化归等数学思想.情感、态度与价值观: 认识函数零点的价值所在,使学生认识到学习数学是有用的; 培养学生认真、耐心、严谨的数学品质; 让学生在自我解决问题的过程中,体验成功的喜悦.【教学重点】 理解函数的零点与方程根的关系,初步形成用函数观点处理问题的意识.【教学难点】 函数零点存在性定理的理解及初步应用.【教学方法】 发现、合作、讲解、演练相结合.【教学过程】(一)抛转引玉江苏南京某天早晨六点的温度是2,十二点的温度是12 在这段时间内,假设温度是均匀变化的,问:1)是否存在某时刻的温度为0? 2)你能从数学的角度来解释这一现象吗?3)能计算出具体的时刻吗?(设计意图:当温度均匀变化时,温度随时间的变化图是一条直线,学生能够根据已知条件发现直线一定与x轴相交,求出相应函数的解析式,最终得出一次函数图象与轴的交点和相应方程的根的关系,为一般函数及相应方程关系作准备)(二)溯本逐源复习总结一元二次方程与相应函数与轴的交点及其坐标的关系:一元二次方程根的个数二次函数图象与轴交点个数二次函数图象与轴交点坐标(设计意图:回顾二次函数图象与轴的交点和相应方程的根的关系,为一般函数及相应方程关系作准备)在几何画板下展示如下函数的图象: 、,比较函数图象与轴的交点和相应方程的根的关系函数的图象与轴交点,即当,该方程有几个根,的图象与轴就有几个交点,且方程的根就是交点的横坐标(设计意图:通过各种函数,将结论推广到一般函数)1函数零点概念对于函数,把使的实数叫做函数的零点说明:函数零点不是一个点,而是具体的自变量的取值2方程的根与函数零点的关系方程有实数根函数的图象与轴有交点函数有零点以上关系说明:函数与方程有着密切的联系,从而有些方程问题可以转化为相应函数问题来求解,同样,函数问题有时也可转化为相应方程问题这正是函数与方程思想的基础(三)顺藤摸瓜 江苏南京某天早晨六点的温度是2,十二点的温度是12 在这段时间内,温度是不均匀变化的,问:是否仍存在某时刻的温度为0?(学生在事先准备好的图纸上画出温度随时间的变化图,教师选取几个具有代表性的图用实物投影仪加以展示,并让学生解释为什么这一时刻仍存在,使学生在自我解决问题的过程中,体验成功的喜悦.)(设计意图:通过类比得出零点存在性定理,此刻体现变式教学)给出零点存在性定理:如果函数在区间上的图象是连续不断一条曲线,并且有,那么,函数在区间内有零点.即存在,使得,这个c也就是方程的根. (四)牛刀小试1. 2求函数的零点的个数(设计意图:通过例题分析,领会方程函数的转化思想,学会用零点存在性定理确定零点存在区间,并且结合函数性质,判断零点个数的方法)(五)抽丝剥茧问题1. 如果函数图象不是连续不断的,结论还成立吗? 问题2.若,函数在区间在上一定没有零点吗?一定有零点吗?问题3.若,函数在区间在上只有一个零点吗?可能有几个?问题4.在满足定理的条件下,能否增加条件,可使函数在区间在上只有一个零点?(设计意图:函数零点存在的判定结论,是函数在某区间上存在零点的充分不必要条件,但零点的个数需结合函数的单调性等性质进行判断结论的逆命题不成立,通过四个问题使学生准确理解零点存在性定理)(六)再接再励1.已知函数f (x)的图象是连续不断的,且有如下对应值表,则函数在哪几个区间内必定有零点?为什么?x123456f (x)20-5.5-2618-32.函数在区间-4,4上是否存在零点?若存在零点,能确定零点的个数及大小吗?(设计意图:本题比较灵活,既可以用零点存在定理,又可以转化为方程、因式分解后求根。目的有二:一是通过确定零点的大小,体会一分为二的思想,为下一节二分法做铺垫;二是再次体会方程函数的转化思想.)(七)提纲挈领1.知识小结: 零点的概念、方程的根与函数的零点 零点存在定理2.思想方法小结:化归思想 数形结合思想 方程函数转化思想(八)作业与课外活动作业: 讲义一份课外活动 在一个星期内,四位同学为小组合作完成一篇关于方程发展史的数学小论文或去探究一下如何缩小零点所在的区间.函数的零点教案说明本节内容:普通高中课程标准实验教科书(苏教版)数学必修1第二章的第一节“函数与方程”的第一课时-函数的零点.下面,我从教材分析、教学诊断分析、教学过程设计分析及预期效果分析四个方面对本节课的教案加以说明.一、 教材分析1、教材的地位与作用本节对“函数零点”的认识,是从初中一次、二次函数与其相应的方程关系的具体学习,过渡到了高中一般方程与其相应函数关系的抽象研究,其学习平台是学生已经掌握了函数的概念、函数的性质以及基本初等函数等相关知识.对本节课的研究,不仅为“用二分法求方程的近似解” 这一“函数的应用”做好准备,而且揭示了方程与函数之间的本质联系,这种联系正是中学数学重要的思想方法之一“函数与方程思想”的理论基础,起到了承前起后的作用.2、内容分析“函数的零点”一课的主要教学内容有函数的零点的定义和函数零点存在的判定方法(即零点存在定理),不仅为后继学习做铺垫,而且从中学数学内容结构来看,本课的内容也可以看作是函数概念的一个子概念,是函数概念外延的一次扩充。给出函数零点概念的目的是把函数与方程联系起来,用函数的观点统领中学代数知识,把所有的中学代数问题都统一到函数的思想之下,从这个角度看本节课还应承载建立函数与方程数学思想的任务.“函数的零点”这个概念体现了联系的观点、整体地看问题,通过转化解决问题,蕴涵了数形结合、化归的数学思想。因此在概念的教学中不但要注重知识的学习,而且要把它作为一个载体,通过概念的获得培养学生的抽象概括等能力,领会数形结合、化归等数学思想.教学的重点是理解函数零点与相应方程根的关系,初步形成用函数观点处理问题的意识. 教学的难点是连续函数在某个区间上存在零点的判定方法的深入理解与初步应用.3、教学目标分析课程标准要求“结合二次函数图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系”. 第三章“函数的应用”的课程目标之一是“通过本章的学习,使学生学会用二分法求方程近似解的方法,从中体会函数与方程之间的联系.“因此,本节课具体目标如下:1能够结合具体方程(如二次方程),说明方程的根、相应函数图象与轴的交点横坐标以及相应函数零点的关系.2正确理解函数零点存在的结论,了解图象连续不断的意义及作用;知道结论只是函数存在零点的一个充分条件;了解函数零点可能不止一个.3能利用函数图象和性质判断某些函数的零点个数.4能顺利将一个方程求解问题转化为一个函数零点问题,写出与方程对应的函数,并会判断存在零点的区间(可使用计算器)4、教学方法分析用成语串联堂课,激发学生的学习兴趣,按照MM教学方式“学习、教学、研究同步协调原则“和二主方针”。运用问题性,给学生创造一种思维情境,一种动脑、动手、动口的机给,提高能力,增长才干,采用学导式、启发式和观察探索法相结合的方法。二教学诊断分析以一次函数的具体应用为例,辅以二次方程及相应的二次函数、加上三个具有代表性的函数的验证,进而引入函数零点的概念,说明方程的根与函数零点的关系,学生并不会觉得困难学生学习的难点是准确理解连续函数在某个区间上存在零点的判定方法,并针对具体函数(或方程),求出零点(或根)所在的区间三教学过程设计分析 数学学习过程是学生在原有认知基础上的主动建构,学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,为了更好地使不同层次的学生形成自己对课题知识的理解,结合本教材的特点,我设计了如下的教学过程,启发学生逐步发现和认识方程的根和函数零点的关系, 掌握连续函数在某个区间上存在零点的判定方法, 初步形成用函数观点处理问题的意识.(一)、抛转引玉用一个生活实例,引出问题,当温度均匀变化时,温度随时间的变化图是一条直线,学生能够根据已知条件发现直线一定与x轴相交,求出相应函数的解析式,最终得出一次函数图象与轴的交点和相应方程的根的关系.仔细分析这个生活实例,它就是本节所研究问题的雏形和全貌,包括了知识、技能、研究方法,体现了方程、不等式与函数的必然统一,体现了整体看待问题、在系统中解决问题的优越性和灵活性,蕴涵了数形结合、化归思想等.(二)溯本逐源先根据初中所学,概括二次函数与其相应方程的关系,接着在几何画板下展示如下函数的图象: 、,比较函数图象与轴的交点和相应方程的根的关系.不局限于一次、二次函数,有助于学生通过比较认识研究问题的本质,最后专门研究一般函数与其相应的方程之间的关系,并由学生给出证明,充分体现数学的严谨性、从特殊到一般的认知规律,使得定义的得出水到渠成.同时让学生领会“数形结合思想”及“化归思想”.(三)、顺藤摸瓜 将引课的实例实际化,“在这段时间内,温度是不均匀变化的”,问:是否仍存在某时刻的温度为0?此刻体现变式教学.(四)、牛刀小试通过两个问题分析,领会方程函数的转化思想,学会用零点存在定理确定零点存在的区间,并且掌握结合函数性质,判断零点个数的方法(五)、抽丝剥茧函数零点存在的判定结论,是函数在某区间上存在零点的充分不必要条件,但零点的个数需结合函数的单调性等性质进行判断结论的逆命题不成立,通过四个问题使学生准确理解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家居建材行业市场格局与发展趋势研究
- 健身行业发展和市场需求分析
- 肝肾同补抗癌机制-洞察及研究
- 北京市特需医疗服务项目协议书6篇
- 吉林省白城市实验高级中学2025-2026学年高二上学期开学考试地理试卷
- 湖北省2025-2026学年七年级语文上学期第一次月考复习试卷(含答案)
- 安徽省合肥市庐阳区2024-2025学年八年级下学期3月月考生物试题(含答案)
- 部门手册培训课件
- 部门安全培训课件
- 遨游汉字王国展示课课件
- 陕西水资源论证报告表
- 大学生暑期社会实践登记表
- 单选题51-100试题含答案
- 最新苏教牛津译林版英语五年级上册Unit 4《Hobbies》Grammar time 公开课课件
- 危险品管理台帐
- 现场技术服务报告模版
- 一年级上《人与自然》
- 高等有机化学PPT精品课程课件全册课件汇总
- 教学课件·固体物理基础(第2版)
- 完整课件-西方经济学下册(第二版)
- 青岛版四年级科学新教材上册实验
评论
0/150
提交评论