高中数学讲义总结.doc_第1页
高中数学讲义总结.doc_第2页
高中数学讲义总结.doc_第3页
高中数学讲义总结.doc_第4页
高中数学讲义总结.doc_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

函数对称性、周期性和奇偶性规律一、 同一函数的周期性、对称性问题(即函数自身)1、 周期性:对于函数,如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,都有都成立,那么就把函数叫做周期函数,不为零的常数T叫做这个函数的周期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。2、 对称性定义(略),请用图形来理解。3、 对称性:我们知道:偶函数关于y(即x=0)轴对称,偶函数有关系式 奇函数关于(0,0)对称,奇函数有关系式 上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数关于对称 也可以写成 或 简证:设点在上,通过可知,即点上,而点与点关于x=a对称。得证。 若写成:,函数关于直线 对称 (2)函数关于点对称 或 44常见三角不等式(1)若,则.(2) 若,则.(3) .45.同角三角函数的基本关系式 ,=,.46.正弦、余弦的诱导公式4、 周期性: (1)函数满足如下关系系,则 A、 B、 C、或(等式右边加负号亦成立) D、其他情形 (2)函数满足且,则可推出即可以得到的周期为2(b-a),即可以得到“如果函数在定义域内关于垂直于x轴两条直线对称,则函数一定是周期函数” (3)如果奇函数满足则可以推出其周期是2T,且可以推出对称轴为,根据可以找出其对称中心为(以上) 如果偶函数满足则亦可以推出周期是2T,且可以推出对称中心为,根据可以推出对称轴为 (以上) (4)如果奇函数满足(),则函数是以4T为周期的周期性函数。如果偶函数满足(),则函数是以2T为周期的周期性函数。定理3:若函数在R上满足,且(其中),则函数以为周期. 定理4:若函数在R上满足,且(其中),则函数以为周期. 定理5:若函数在R上满足,且(其中),则函数以为周期.二、 两个函数的图象对称性1、 与关于X轴对称。换种说法:与若满足,即它们关于对称。2、 与关于Y轴对称。换种说法:与若满足,即它们关于对称。3、 与关于直线对称。换种说法:与若满足,即它们关于对称。4、 与关于直线对称。换种说法:与若满足,即它们关于对称。5、 关于点(a,b)对称。换种说法:与若满足,即它们关于点(a,b)对称。6、 与关于直线对称。7、 函数的轴对称:定理1:如果函数满足,则函数的图象关于直线对称.推论1:如果函数满足,则函数的图象关于直线对称.推论2:如果函数满足,则函数的图象关于直线(y轴)对称.特别地,推论2就是偶函数的定义和性质.它是上述定理1的简化.8、 函数的点对称:定理2:如果函数满足,则函数的图象关于点对称.推论3:如果函数满足,则函数的图象关于点对称.推论4:如果函数满足,则函数的图象关于原点对称.特别地,推论4就是奇函数的定义和性质.它是上述定理2的简化.三、总规律:定义在上的函数,在对称性、周期性和奇偶性这三条性质中,只要有两条存在,则第三条47.和角与差角公式 ;.(平方正弦公式);.=(辅助角所在象限由点的象限决定, ).48.二倍角公式 .49. 三倍角公式 .50.三角函数的周期公式 函数,xR及函数,xR(A,为常数,且A0,0)的周期;函数,(A,为常数,且A0,0)的周期.51.正弦定理.52.余弦定理;.53.面积定理(1)(分别表示a、b、c边上的高).(2).(3).54.三角形内角和定理 在ABC中,有.55. 简单的三角方程的通解 . .特别地,有. .56.最简单的三角不等式及其解集 . . . .57.实数与向量的积的运算律设、为实数,那么(1) 结合律:(a)=()a;(2)第一分配律:(+)a=a+a;(3)第二分配律:(a+b)=a+b.58.向量的数量积的运算律:(1) ab= ba (交换律);(2)(a)b= (ab)=ab= a(b);(3)(a+b)c= a c +bc.59.平面向量基本定理 如果e1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数1、2,使得a=1e1+2e2不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底60向量平行的坐标表示 设a=,b=,且b0,则ab(b0).53. a与b的数量积(或内积)ab=|a|b|cos 61. ab的几何意义数量积ab等于a的长度|a|与b在a的方向上的投影|b|cos的乘积62.平面向量的坐标运算(1)设a=,b=,则a+b=.(2)设a=,b=,则a-b=. (3)设A,B,则.(4)设a=,则a=.(5)设a=,b=,则ab=.63.两向量的夹角公式(a=,b=).64.平面两点间的距离公式 =(A,B).第5 课 函数的图像【考点导读】1.掌握基本初等函数的图像特征,学会运用函数的图像理解和研究函数的性质;2.掌握画图像的基本方法:描点法和图像变换法【基础练习】向上平移3个单位向右平移1个单位1.根据下列各函数式的变换,在箭头上填写对应函数图像的变换:向右平移3个单位作关于y轴对称的图形(1) ;(2) 2.作出下列各个函数图像的示意图:(1); (2); (3)解:(1)将的图像向下平移1个单位,可得的图像图略;(2)将的图像向右平移2个单位,可得的图像图略;Oyx11(3)由,将的图像先向右平移1个单位,得的图像,再向下平移1个单位,可得的图像如下图所示:3.作出下列各个函数图像的示意图:(1); (2); (3); (4)解:(1)作的图像关于y轴的对称图像,如图1所示;(2)作的图像关于x轴的对称图像,如图2所示;(3)作的图像及它关于y轴的对称图像,如图3所示;1Oyx图1(4)作的图像,并将x轴下方的部分翻折到x轴上方,如图4所示1Oyx图21Oyx图41Oyx图314. 函数的图象是( B )A1xyOB1xyOC1xyOD1xyO-1-1-1-11111【范例解析】例1.作出函数及,的图像分析:根据图像变换得到相应函数的图像解:与的图像关于y轴对称;与的图像关于x轴对称;将的图像向左平移2个单位得到的图像;保留的图像在x轴上方的部分,将x轴下方的部分关于x轴翻折上去,并去掉原下方的部分;将的图像在y轴右边的部分沿y轴翻折到y轴的左边部分替代原y轴左边部分,并保留在y轴右边部分图略点评:图像变换的类型主要有平移变换,对称变换两种平移变换:左“+”右“”,上“+”下“”;对称变换:与的图像关于y轴对称;与的图像关于x轴对称;与的图像关于原点对称;保留的图像在x轴上方的部分,将x轴下方的部分关于x轴翻折上去,并去掉原下方的部分;将的图像在y轴右边的部分沿y轴翻折到y轴的左边部分替代原y轴左边部分,并保留在y轴右边部分例2.设函数.(1)在区间上画出函数的图像;(2)设集合. 试判断集合和之间的关系,并给出证明.分析:根据图像变换得到的图像,第(3)问实质是恒成立问题解:(1)(2)方程的解分别是和,由于在和上单调递减,在和上单调递增,因此.由于.【反馈演练】Oy11BxOyx11A1函数的图象是( B ) Oy11DxOyx11C2. 为了得到函数的图象,可以把函数的图象向右平移1个单位长度得到3已知函数的图象有公共点A,且点A的横坐标为2,则=4设f(x)是定义在R上的奇函数,且y=f (x)的图象关于直线对称,则f (1)+ f (2)+ f (3)+ f (4)+ f (5)=_0_ 5. 作出下列函数的简图:(1); (2); (3)2012高中数学复习讲义 第二章 函数B第6课 二次函数【考点导读】1.理解二次函数的概念,掌握二次函数的图像和性质;2.能结合二次函数的图像判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系【基础练习】1. 已知二次函数,则其图像的开口向_上_;对称轴方程为;顶点坐标为 ,与轴的交点坐标为,最小值为2. 二次函数的图像的对称轴为,则_2_,顶点坐标为,递

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论