钣金成形冲压工艺规程.doc

单孔E字山形片(BS13-F21) 钣金成形工艺及冲压模具设计-级进模含9张CAD图.zip

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图
编号:42635975    类型:共享资源    大小:558.94KB    格式:ZIP    上传时间:2020-01-19 上传人:QQ14****9609 IP属地:陕西
100
积分
关 键 词:
单孔E字山形片BS13-F21 钣金成形工艺及冲压模具设计-级进模含9张CAD图 单孔 山形 BS13 F21 成形 工艺 冲压 模具设计 级进模含 CAD
资源描述:
单孔E字山形片(BS13-F21) 钣金成形工艺及冲压模具设计-级进模含9张CAD图.zip,单孔E字山形片BS13-F21,钣金成形工艺及冲压模具设计-级进模含9张CAD图,单孔,山形,BS13,F21,成形,工艺,冲压,模具设计,级进模含,CAD
内容简介:
任务书届次 XX 姓名 XX 班级 XX 学号 XX 一、设计题目:山形片(BS13-F21) 钣金成形工艺及模具设计二、产品零件图及要求:名称山形片材料青铜/t=1生产批量中批生产条件不限三、 设计内容:1产品零件的钣金冲压工艺规程:1份2钣金成形模具设计图样(含二维总装图、非标准零件图):1套3设计说明书:1份发题日期:20XX年 12 月 23日 完成日期:20XX 年 5 月 15日指导教师: XX 专业主任: XX 目 录摘要11前言12冲压件工艺分析22.1分析工件的技术要求22.1.1加工表面的尺寸精度及尺寸基准22.1.2主要加工表面的形位公差精度32.1.3表面质量要求32.2工件材料及机械性能32.3零件的结构工艺性分析33 工艺方案确定33.1工艺方案的提出43.2工件生产工序的确定43.3模具定位零件与卸料零件的选择43.3.1定位零件的选择43.3.2卸料零件的选择53.3.3出料方式的选择53.3.4导向方式的选择54 排样设计54.1材料利用率54.2排样方法64.3.1 排样及搭边值的计算74.3.2 步距的计算74.3.3 条料宽度的确定74.3.4 材料利用率的计算85 模具主要受力分析计算95.1冲压力的计算95.2.1 总冲裁力的计算95.2.2 卸料力、推件力的计算105.2.3 总冲压力的计算115.2压力机吨位选择115.2.1 冲压设备类型的选择115.2.2确定压力机设备的规格126 模具工作部分设计计算146.1冲裁间隙146.1.1冲裁间隙对冲裁件质量的影响146.1.2 间隙对模具寿命的影响156.1.3 对冲裁力、卸料力的影响176.2合理间隙的选用176.2.1理论计算法186.2.2查表选取法186.3 模具刃口尺寸的计算196.3.1计算原则196.3.2计算方法196.4级进模的各个工位冲裁凸、凹模刃口尺寸计算207 模具结构设计和主要零、部件设计227.1 凹模周界的确定237.2 模座及导套的选取237.3 模柄的选用237.4 冲裁凸、凹模结构设计237.4.1模具材料选择与热处理237.4.2 钢的性能247.4.3凹模刃口形式的确定248总结26参考文献2628垫片钣金成型工艺及模具设计 摘 要:本文是对尺寸小,精度要求相对较高,工艺比较复杂,生产批量大的山形片进行设计。在对山形片结构工艺性和材料加工工艺性正确分析的基础上,采用叙述与计算相结合的方式,分别对级进模的冲孔、落料等工序进行了从材料的选择到工作零件、定位零件、卸料零件、导向零件和安装固定零件等进行了设计。讨论了思路的可行性,并对其进行了整体和局部的结构设计。此级进模的设计,对以往的学习进行了一次综合性的运用,对今后的工作也有相当大的指导意义。通过对课题的冲压工艺的分析及模具零件的计算后,首先对主要的工作零件以及非标零件进行二维图的绘制,并且绘制本套模具的装配图;其次对主要工作零件的加工进行工艺卡片的编制。 关键词:工艺分析; 零件设计; 模具装配1 前言板料成形一般称为冲压,它是对厚度较小的板料,利用专门的模具,使金属板料通过一定模孔而产生塑性变形,从而获得所需的形状、尺寸的零件或坯料。冲压这类塑性加工方法可进一步分为分离工序和成形工序两类。分离工序用于使冲裁件与板料沿一定的轮廓线相互分离,如冲裁、剪切等工序;成形工序用来使坯料在不破坏的条件下发生塑性变形,成为具有要求形状和尺寸的零件,如弯曲、拉深等工序。随着生产技术的发展,还不断产生新的塑性加工方法,例如连铸连轧、液态模锻、等温锻造和超塑性成形等,这些都进一步扩大了塑性成形的应用范围。塑性加工按成形时工件的温度还可以分为热成形、冷成形和温成形三类。热成形是充分进行再结晶的温度以上所完成的加工,如热轧、热锻、热挤压等;冷成形是在不产生回复和再结晶的温度以下进行的加工,如冷轧、冷冲压、冷挤压、冷锻等;温成形是在介于冷、热成形之间的温度下进行的加工,如温锻、温挤压等。本工件的成形属于冷成形。虽金属塑性成形的方法多种多样,具有各自的特点。但它们具有共同的特点,即都要利用金属的塑性,并都要借助于一定的外力使其产生塑性变形,这就是所谓的金属塑性加工。金属的塑性加工是以塑性为前提条件。塑性越好,则预示着金属具有更好的塑性成形适应能力,允许产生更大的变形量;反之,如果金属一受力即行断裂,则塑性加工也就无从进行,因而,从工艺角度出发,人们总是希望变形金属具有良好的塑性。因而对金属塑性成形工艺应提出相应的要求:1)使金属具有良好的塑性;2)使变形抗力小;3)保证塑性成形件质量,即使成形件组织均匀、晶粒细小、强度高、残余应力小等;4)能了解变形力,以便为选择成形设备、设计模具提供理论依据。 2 冲压件工艺分析冲压件的工艺性,是指冲压件对冲压工艺的适应性,即冲裁件的形状结构、尺寸大小、尺寸偏差、形位公差与尺寸基准等是否符合冲压工艺要求。本次设计的工件形状如图2-1,现对该工件冲压工艺性进行分析:图 2-1 工件图2.1分析工件的技术要求2.1.1加工表面的尺寸精度及尺寸基准工件中对标有尺寸精度的尺寸按照零件图的精度进行设计,对其他未标尺寸按一般精度设计,即按国标对非圆形工件精度等级取IT14级设计,对圆形工件精度等级取IT10级设计。冲裁件的尺寸基准应尽可能和制模时的定位基准重合,以避免产生基准不重合误差。孔位尺寸基准应尽量选择在冲裁过程中始终不参加变形的面或线上,切不要与参加变形的部分联系起来。2.1.2主要加工表面的形位公差精度通过分析零件图,该零件的未表注形位公差精度按一般的精度要求处理即可满足工艺要求。2.1.3表面质量要求该工件为标有表面质量精度要求按照一般要求处理即可满足工艺要求,即表面粗糙度。2.2工件材料及机械性能在本次设计中,冲压零件使用的材料为青铜,厚度t=1mm。2.3零件的结构工艺性分析此工件为山形片多工位级进模设计,工件体积不大。主要工序为冲孔、落料。所示工件部分要采用冲孔工序。冲裁件的形状应尽可能简单、对称、避免复杂形状的曲线,在许可的情况下,把冲裁件设计成少、无废料排样的形状,以减少废料。矩形孔两端宜用原弧连接,以利于模具加工。冲裁件各直线或曲线的连接处,尽量避免锐角,严禁尖角。除在少、无废料排样或采用镶拼模结构时,都应有适当的圆角相连,以利于模具制造和提高模具寿命,圆角半径R的最小值可参考文献4第75页表2-17选取。冲裁件的孔径受冲孔凸模强度和刚度的限制,不宜太小,否则容易折断或压弯,冲孔的最小尺寸可参考文献4第75页表2-18。如果采用带保护套的凸模,稳定性高,凸模不易折损,最小冲孔尺寸可以减小,参考文献4第76页表2-19。冲孔件上孔和孔、孔与边缘之间的距离不能过小,以避免工件变形、模壁过薄或因材料易被拉入凹模而影响模具寿命。一般孔边距取:对圆孔为(11.5)t,对矩形孔为(1.52)t。孔距的最小尺寸可见文献4第76页表2-20。本工件基本符合上述各项要求,因而在结构上是满足工艺的,能够进行级进模加工。3 工艺方案确定3.1工艺方案的提出根据本工件的外形尺寸及形状,可确定本工件属于落料冲孔工序。根据上述的加工方法可提出以下几种模具典型结构所设计的模具加工方案:1)单工序模生产 单工序模结构简单,制作周期短,制作成本低廉,生产效率低,冲出的制件精度不高,且工人劳动强度大,不适合大批量的生产。2)复合模生产 复合模结构紧凑,冲出的制件精度较高,适合大批量生产,特别是孔与制件外形的同心度容易保证。但模具结构复杂,模具制造较困难,制造成本高,制造周期长等缺点。3)级进模生产 在一副级进模上可对形状十分复杂的冲压件进行冲裁、弯曲、拉深成形等工序,故生产率高,便于实现机械化和自动化,适于大批量生产。由于采用条料(或带料)进行连续冲压,所以操作方便安全。级进模的主要缺点是结构复杂,制造精度高,周期较长,成本高。在生产本工件时若采用单工序模生产,制作本工件至少需要5个单工序,也就意味着需要5副以上的模具来进行生产,而且本工件需要长年大批大量生产,采用单工序不但所需的单工序模较多而且会造成产品精度无法保证,经济效益低等缺点,故不宜采用单工序模进行生产。若采用复合模生产,本工件因工件有孔离边缘较近,若采用冲孔落料复合模,则造成模具的凸凹模壁厚太薄,凸凹模无法满足生产需要。若采用级进模生产,在排样时,只要按正常冲裁工序,保证工件间的精度,同时降低模具的制造难度。综合上述几种方案的比较,应选用级进模进行生产,既可实现大批量生产,也可以节约材料。因此选用级进模生产。3.2工件生产工序的确定生产工序最终确定为:1 冲孔 2 落料。3.3模具定位零件与卸料零件的选择3.3.1定位零件的选择定位部分零件的作用是使毛胚(条料或块料)送料时有准确的位置,保证冲出合格制件,不致冲缺而造成浪费。该模具设计时,采用挡料销定位,保证工件冲裁时的定位精度。3.3.2卸料零件的选择卸料装置分为刚性(即固定卸料板)和弹性两种,废料切刀也是一种卸料的形式。固定卸料板的卸料力大,但无压料作用,毛胚材料厚度大于0.8mm时多采用次形式。弹性卸料板的卸料力小,但有压料作用,冲裁质量较好,多用于薄料。因本工件的表面质量要求高,需要有压料作用,且工件卸料力不大,故选用弹性卸料装置。3.3.3出料方式的选择出料方式有上出料和下出料两种方式,若采用上出料方式,则还需将废料或工件钩出,不利于级进模的连续生产;若采用下出料方式,废料或工件可直接从凹模孔中漏出,结构简单,且有利于连续大量生产。故出料方式选用下出料方式。3.3.4导向方式的选择由于工件是大批量生产,采用滑动导柱、导套定位,导柱、导套是一种间隙、精度高、寿命较长的导向装置,适用于大批量的高精度生产。4 排样设计4.1材料利用率排样的合理与否,影响到材料的经济利用率,还会影响到模具结构、生产率、制件质量、生产操作方便与安全等。因此,排样是冲裁工艺与模具设计中一项很重要的工作。冲压件大批量生产成本中,毛坯材料费用占60%以上,排样的目的就在于合理利用原材料。衡量排样经济性、合理性的指标是材料的利用率。其计算公式如下:一个进距内的材料利用率为 (4.1)式中 A冲裁件面积(包括冲出的小孔在内)(mm2); n一个进距内冲件数目; B条料宽度(mm); h进距(mm); 一张板料上总的材料利用率为: (4.2)式中 N一张板料上冲件总数目; L板料长度(mm)。(1)结构废料 由于工件结构形状的需要,如工件内孔的存在而产生的废料,称为结构废料,它决定于工件的形状,一般不能改变。(2)工艺废料 工件之间和工件与条料边缘之间存在的搭边,定位需要切去的料边与定位孔,不可避免的料头和料尾废料,称为工艺废料,它决定于冲压方式和排样方式,是可以改变的,我们提高材料的利用率,主要就是减少工艺废料,优化排样方式。 4.2排样方法根据材料的利用情况,排样的方法分三种:1有废料排样沿工件的全部外形冲裁工件与工件之间,工件与条料侧边之间都有工艺余料(搭边)存在,冲裁后搭边成为废料,如图4-1(a)所示。图 4-1 排样方法2少废料排样沿工件的部分外形轮廓切断或冲裁,只在工件之间或是工件与条料侧边之间有搭边存在,如图4-1(b)所示。3无废料排样工件与工件之间,工件与条料侧边之间均无搭边存在,条料沿直线或曲线切断而得到工件。如图4-1(c)所示。有废料排样法的材料利用率较低,但制件的质量和冲模寿命较高,常用于工件形状复杂、尺寸精度要求较高的排样。少、无废料排样法的材料利用率较高,同时,少、无废料排样法有利于一次冲裁多个工件,可以提高生产率。由于这两种排样法冲切周边减少,所以还可以简化模具结构,降低冲裁力。但它们的应用范围有一定局限性,受工件形状的限制,且由于条料本身的宽度公差,条料导向与定位所产生的误差,会直接影响工件尺寸而使工件精度降低。同时也会降低冲模的寿命,并会影响到工件的断面质量,所以少、无废料排样常用于精度要求不高的工件排样。本工件对外形尺寸虽无严格的尺寸精度要求,但工件形状比较复杂;本工件大批大量生产,因而对模具寿命要求较高,因此排样方法采用有废料排样法的直排法。要提高材料的利用率,就必须减少废料面积,排样图我们选择采用直对排的方式(如图4-2)。4.3搭边值的选用和条料的选用及步距的确定4.3.1 排样及搭边值的计算在条料上冲裁时,工件之间以及工件和条料侧边之间的余料称为搭边。搭边的作用是:补偿送料误差,以保证冲出合格产品;保持条料刚度利于送料,避免废料丝进入模具间隙损坏模具。搭边值要合理确定,从节省材料出发,搭边值越小越好,但搭边值小于一定数值后,对模具寿命和剪切表面质量不利。综合考虑工件质量及成本,根据零件形状尺寸,材料厚度,材料的力学性能以及送料及挡料方式,我们来选择合理的搭边值。 表4-1 工件的搭边值卸料板形式条料厚度t/mm搭边值/mm料宽50料宽50刚性卸料板0.252.22.23.20.250.52.02.03.00.51.01.51.52.51.01.51.81.82.81.52.02.02.03.02.02.52.52.23.2弹性卸料板0.251.51.82.60.250.511.52.50.51.01.51.82.61.01.52.02.23.2此次设计采用的是弹性性卸料装置,根据表4-1确定工件的侧搭边值为2mm,工件间为2mm。4.3.2 步距的计算步距是指冲压过程中压力机每冲压一次条料向前送进的距离,其值为排样沿送进方向两相邻毛坯之间的最小距离值步距可定义为:S=L+b (4.3)式中 S冲裁步距;L沿条料送进方向,毛坯外形轮廓的最大宽度值;b沿送进方向的搭边值本设计沿条料送进方向,毛坯外形轮廓的最大宽度值L=13mm, 沿送进方向的搭边值b=1.5mm所以步距S=L+b =13+1.5 =14.5mm4.3.3 条料宽度的确定条料宽度指根据排样结果确定的毛坯所需条料宽度方向的最小尺寸。理论上条料宽度可按下式计算: (4.4)式中 B条料宽度的基本尺寸;D工件在宽度方向的尺寸;a侧搭边最小值。条料宽度偏差(查表得本设计=0.5)由于模具加工误差,条料的裁剪误差及送料时的误差。实际的条料宽度应有一定的裕度,具体尺寸可根据不同的送料侧定位方式计算。本设计条料宽度可用下式计算: =mm所以板料宽度为27mm。4.3.4 材料利用率的计算材料利用率定义为:=A/BS100% (4.5)式中 材料利用率A产品毛坯外形所包容的面积,CAD测量得:249.25mm2B条料宽度S冲裁步距=A/BS100% =249.25/2714.5100% =63.7%越大,废料多占面积越小。因此,一般将作为衡量毛坯排样方案友优劣的指标。材料利用率的计算有时也可以整个条料为基础计算。即 在冲压生产中,材料利用率为63.7%。图4-2 零件排样图5 模具主要受力分析计算5.1冲压力的计算计算冲裁力是为了选择合适的压力机,设计模具和检验模具的强度,压力机的吨位必须大于所计算的冲裁力,以适宜冲裁的要求,普通平刃冲裁模,其冲裁力Fp一般可以按下式计算:Fp=KptL (5.1)式中:-材料抗剪强度; L-冲裁周边总长(mm); t-材料厚度(mm);系数Kp是考虑到冲裁模刃口的磨损,凸模与凹模间隙之波动(数值的变化或分布不均)润滑情况,材料力学性能与厚度公差的变化等因数而设置的安全系数Kp,一般取13。当查不到抗剪强度时,可以用抗拉强度b代替,而取Kp=1.3的近似计算法计算。的数值取决于材料的种类和坯料的原始状态,可在设计资料及有关手册中查找,本设计取值的通过查下表确定,材料为青铜,厚度t=1mm,取=400MPa。5.2.1 总冲裁力的计算由于冲裁模具采用弹性卸料装置和自然落料方式。F冲= F1+F2 (5.2)式中: F冲-总冲裁力; F1-落料时的冲裁力; F2-冲孔时的冲裁力。冲裁周边的总长(mm),落料周长为:L169(mm)冲孔周长为: L2=84.5(mm)落料冲裁力由公式(5-3)得: F1=KptL1 =1.3169400 =35880(N)冲孔冲裁力由公式(5-3)得: F2=KptL2 =1.3184.5400 =43940(N)F总=35880+43940=79820(N)5.2.2 卸料力、推件力的计算当上模完成一次冲裁后,冲入凹模内的制件或废料因弹性扩张而梗塞在凹模内,模面上的材料因弹性收缩而会紧箍在凸模上。为了使冲裁工作连续,操作方便,必须将套在凸模上的材料刮下,将梗塞在凹模内的制件或废料向下推出或向上顶出。从凸模上刮下材料所需的力,称为卸料力;从凹模内向下推出制件或废料所需的力,称为推料力。模具采用弹性卸料装置和推件结构,凹模型口直壁高度h=5mm,所需卸料力F卸和推件力F推分别为:推件力、卸料力计算公式如下:F推=nK推F冲 (5.3)F卸= K卸 F落 (5.4)式中:F推-推件力; F卸-卸料力; F冲-冲裁力; K卸-卸料力系数; K推-推件力系数; n-卡在凹模里的工件个数,n=h/t。5-1 卸料力、推件力和顶件力系数 mm料厚/mmK卸K推K顶钢0.10.10.50.52.52.56.56.50.0650.0750.0450.0550.040.050.030.040.020.020.10.0630.0550.0450.0250.140.080.060.050.03铝及铝合金紫铜、黄铜0.0250.080.020.060.030.070.030.09注:卸料力系数K卸在冲多孔、大搭边和轮廓复杂时取上限值。K推-推件力系数通过查表4-1确定,推件力系数取K推0.055;由公式得: 推件力 F推=nK推F冲 =6/10.05579820 =26340(N)K卸卸料力系数通过查表5-4确定,卸料力系数取K卸0.05;由公式得: 卸料力 F卸= K卸 F落=0.0579820 =3991(N)5.2.3 总冲压力的计算 F= F冲+F落+F卸+F推=79820+26340+3991 =110151(N)5.2压力机吨位选择5.2.1 冲压设备类型的选择根据所要完成的冲压工艺的性质,生产批量的大小,冲压件的几何尺寸和精度要求等来选择设备的类型。对于中小型的冲裁件,弯曲件或拉深件的生产,主要应采用开式机械压力机。虽然开式冲床的刚度差,在冲压力的作用下床身的变形能够破坏冲裁模的间隙分布,降低模具的寿命或冲裁件的表面质量。可是,由于它提供了极为方便的操作条件和非常容易安装机械化附属装置的特点,使它成为目前中、小型冲压设备的主要形式。对于大中型冲压件的生产多采用闭式结构形式的机械压力机,其中有一般用途的通用压力机,也有台面较小而刚度大的专用挤压压力机、精压机等。在大型拉深件的生产中,应尽量选用双动拉深压力机,因其可使所用模具结构简单,调整方便。 在小批量生产当中,尤其是大型厚板冲压件的生产多采用液压机。液压机没有固定的行程,不会因为板料厚度变化而超载,而且在需要很大的施力行程加工时,与机械压力机相比具有明显的优点。但是,液压机的速度小,生产效率低,而且零件的尺寸精度有时因受到操作因素的影响而不十分稳定。 摩擦压力机具有结构简单、造价低廉、不易发生超负荷损坏等特点,所以在小批量生产中常用来完成弯曲、成形等冲压工作。但是,摩擦压力机的行程次数较少,生产率低,而且操作也不太方便。 在大批量生产或形状复杂零件的大量生产中,应尽量选用高速压力机或多工位自动压力机。 综合以上因素,选用开式压力机比较合适。5.2.2确定压力机设备的规格 (1)压力机的行程太小,应能保证成型零件的取出和毛坯的放进,例如拉深所用的压力机行程,至少应大于成型零件的高度两倍以上。 (2)压力机工作台面的尺寸应大于冲模平面尺寸,且还需留有安装固定的余地,但过大的工作台面上安装小尺寸的冲模,工作台的受力条件也是不利的。 (3)所用压力机的闭合高度应与冲模闭合高度相适应。 模具闭合高度是指上模在最低工作位置时,下模板的底面到上模板顶面的距离。 压力机的闭合高度是指滑块在下死点时,工作台面到滑块的距离。大多数压力机,其连杆长度能调节,也即压力机的闭合高度可以调整,故压力机有最大的闭合高度,最小闭合高度。 设计模具时,模具的闭合高度的数值应该满足下式 如无特殊情况应取上限值,即最好取在.这是为了避免连杆调节过长,螺纹接触面积小而压坏。如果模具闭合高度实在太小,可以在压床下面加垫板。图5-1 压力机和模具的闭合高度关系(4)冲压力与压力机能的配合关系:当进行冲裁等冲压加工时,由于其施力行程较小,近于板料的厚度,所以可按冲压过程中作用于压力机滑块上所有力的总和选取压力机。通常取压力机的名义吨位比大。本模具在冲裁过程中总的冲压力,结合模具的闭合高度,为防止设备过载,可按公称压力选择压力机。参考文献6第49页初选压力机型号为J23-16压力机,其主要技术参数如下:公称压力:160KN滑块行程:55mm最大封闭高度:封闭高度调节量:工作台尺寸(前后左右):模柄孔尺寸(直径深度):286 模具工作部分设计计算6.1冲裁间隙冲裁间隙是冲裁模的凸模和凹模刃口之间的间隙。冲裁间隙分为单边间隙和双边间隙单边间隙用C表示,双边间隙用Z表示。间隙值的大小对冲裁件质量、模具寿命、冲裁力的影响很大,是冲裁工艺与模具设计中一个极其重要的工艺参数。6.1.1冲裁间隙对冲裁件质量的影响冲裁件的质量主要是指断面质量、尺寸精度、和形状误差。断面应平直、光滑;圆角小;无裂纹、撕裂、夹层和毛刺等缺陷。零件表明应尽可能平整。尺寸应在图样规定的公差范围内。影响冲裁件质量的因素有:凸、凹模间隙值的大小及其分布的均匀性,模具刃口锋利状态、模具结构与制造精度,材料性能等,其中,间隙值的大小与分布的均匀性是主要因素。冲裁件的尺寸精度是指冲裁件实际尺寸与标称尺寸的差值(),差值越小,精度越高。这个差值包括两方面的偏差,一是冲裁件相对凸模或凹模尺寸的偏差,二是模具本身的制造偏差。冲裁件相对凸模或凹模尺寸的偏差,主要是由于冲裁过程中,材料受拉伸、挤压、弯曲等作用引起的变形,在加工结束后工件脱离模具时,会产生弹性恢复而造成的。偏差值可能是正的,也可能是负的。影响这一偏差值的因素主要是凸、凹模的间隙。当间隙较大时,材料所受拉伸作用增大,冲裁完毕后,因材料的弹性恢复,冲裁件尺寸向实体方向收缩,使落料件尺寸小于凹模尺寸,而冲孔件的尺寸则大于凸模尺寸。当间隙较小时,凸模压入板料接近挤压状态,材料受凸、凹模挤压力大,压缩变形大,冲裁完毕后,材料的弹性恢复使落料件尺寸增大,而冲孔件的孔径则变小。此外,尺寸变化量的大小还与材料力学性能、厚度、轧制方向、冲裁件形状等因素有关。材料软,弹性变形量小,冲裁后弹性恢复量就小,零件的精度也就高。材料硬,弹性恢复就大。上述讨论的是模具在制造精度一定的前途下进行的,间隙对冲裁件精度的影响比模具本身制造精度的影响要小得多,若模具刃口制造精度低,冲裁出的工件精度也就无法得到保证。模具的制造精度与冲裁件精度之间的关系见表6-1。表6-1 冲裁件精度冲模制造精度材 料 厚 度 t (mm)0.50.81.01.52345681012IT6IT7IT7IT9IT9IT8-IT8IT9-IT9IT10-IT10IT10IT12IT10IT12IT12-IT12IT12-IT12IT12-IT12-IT14-IT14-IT14-IT14模具的磨损及模具刃口在压力作用下产生的弹性变形也会影响到间隙及冲裁件应力状态的改变,对冲裁件的质量会产生综合性影响。6.1.2 间隙对模具寿命的影响冲裁模具的寿命以冲出合格制品的冲裁次数来衡量,分两次刃磨间的寿命与全部磨损后的总寿命。冲裁过程模具的损坏有磨损、崩刃、折断、啃坏等多种形式。影响模具寿命的因素很多,有模具间隙;模具制造材料和精度、表面粗糙度;被加工材料特性;冲裁件轮廓形状和润滑条件等。模具间隙是其中的一个主要因素。因为在冲裁过程中,模具端面受到很大的垂直压力和侧压力,而模具表面与材料的接触面仅局限在刃口附近的狭小区域,这就意味着即使整个模具在许用压应力下工作,但在模具刃口处所受的压力也非常大。这种高的压力会使冲裁模具和板材的接触面之间产生局部附着现象,当接触面发生相对滑动时,附着部分便发生剪切而引起磨损附着磨损。其磨损量与接触压力、相对滑动距离成正比,与材料屈服强度成反比。它被认为是模具磨损的主要形式。图6.1 间隙和磨损的关系当模具间隙减小时,接触应力(垂直力、侧压力、摩擦力)会随之增大,摩擦距离随之增长,摩擦发热严重,因此模具磨损加剧(如图6-1),甚至使模具与材料之间发生粘结现象。而接触压力的增大,还会引起刃口等异常损坏。这些都导致模具寿命大 大降低。因此适当增大模具间隙,可使凸、凹模侧面与材料间的摩擦减小,并减缓间隙不均匀的不利因素,从而提高模具寿命。但间隙过大,板料的弯曲拉伸相应增大,使模具刃口端面上的正压力增大,容易产生崩刃或产生塑性变形使磨损加剧,降低模具寿命。同时,间隙过大,卸料力会随之增大,也会增加模具的磨损。所以间隙是影响模具寿命的有一个重要因素。从上图可看出,凹模端面的磨损比凸模大,这是由于凹模端面上材料的滑动比较自由,而凸模下面的材料沿板面方向的移动受到限制的原因,而图中所看到凸模侧面的磨损最大,是因为从凸模上卸料,长距离,摩擦加剧了侧面的磨损,若采用较大的间隙可使孔径在冲裁后因弹性回弹增大,卸 料时减少与凸模的摩擦,从而减小凸模侧面的磨损。图6.2 间隙大小对冲裁力的影响模具刃口的磨损,带来刃口的钝化和间隙的增加,使制件尺寸精度降低,冲裁能量增大,断面粗糙。刃口的钝化会使裂纹发生点由刃口端面向侧面移动,发生在刃口磨损部分终止处,从而产生大小和磨损量相当的毛刺(凸模刃口磨钝,毛刺产生在落料件上,凹模刃口磨钝,毛刺产生在孔上),所以必须注意尽量减小模具磨损。为提高模具寿命,一般需要增大间隙,使2/t达到15%25%,模具寿命可提高35倍,若采用小间隙,就必须提高模具硬度与模具制造精度,在冲裁刃口进行充分的润滑,以减小磨损。6.1.3 对冲裁力、卸料力的影响当间隙减小,凸模压入板材的情况接近挤压状态,材料所受拉应力减小,压应力增大,板料不易产生裂纹,因此最大冲裁力增大;当间隙增大,板料所受拉应力增大,材料容易产生裂纹,因此冲裁力减小。继续增大间隙值,凸、凹模刃口产生的裂纹不相重合,会发生二次断裂,冲裁力下降变缓(图6.2)。图6.3 间隙大小对卸料力的影响间隙大小对卸料力的影响可见图6-3。间隙增大时,而冲裁件光滑带窄,落料件尺寸偏差为负,冲孔件尺寸偏差为正,因此使卸料力、推件力或顶件力减小。间隙继续增大时,而毛刺增大,卸料力、顶件力迅速增大。图6.4 合理间隙的确定6.2合理间隙的选用由以上分析可知,凸、凹模间隙是冲裁过程最重要的工艺参数,它对冲裁件质量、模具寿命、冲裁力和卸料力等都有很大的影响。因此,设计模具时,一定要选择一个合理的间隙,使冲裁件的断面质量好,尺寸精度高,模具寿命长,所需冲裁力小。但严格来说,并不存在一个同时满足所有理想要求的合理间隙。考虑到模具制造中的偏差及使用中的磨损,生产中通常是选择一个适当的范围,就可以基本满足以上各项要求,冲出合格制件。这个范围的最小值称为最小合理间隙,最大值称为最大合理间隙。考虑到模具在使用过程中的逐步磨损,设计和制造新模具时应采用最小 合理间隙。 确定合理间隙的方法主要有理论计算法和查表选取法两种。 6.2.1理论计算法 确定间隙时理论计算的依据主要是:在合理间隙的情况冲裁时,材料在凸、凹模刃口处产生的裂纹成直线会合。从图6-4所示的几何关系可得出计算合理间隙的公式: (引自文献第56页)式中产生裂纹时的凸模压入深度(mm);料厚(mm);最大切应力方向与垂线间夹角(即裂纹方向角)。由上式可知,间隙Z一板材厚度、相对压入深度、裂纹方向角有关。而、又与材料性质有关,表6-2为常用材料的与的近似值。由表中可以看到,影响间隙值的主要因素是板材力学性能及其厚度。板材越厚、越硬或塑性越差,值越小,合理间隙值越大。材料越软,值越大,合理间隙值越小。材料硬化后,之比值较表中值要小10%左右。式中,令,称为材料的品质系数。由于这种方法用起来不方便,所以目前生产上普遍使用的是查表选取法。6.2.2查表选取法如上所述,间隙的选取主要与材料的种类、厚度有关,但由于各种冲压件对其断面质量和尺寸精度的要求不同,以及生产条件的差异,在生产实践中就很难有一种统一的间隙数值,各种资料中给的间隙值并不相同,有的相差较大,选用时应按使用要求分别选取。对于断面质量和尺寸精度要求高的工件,应选用小的间隙值,而对于精度要求不高的工件,则应尽可能采用大间隙,以利于提高模具寿命、降低冲裁力。同时还必须结合生产条件,根据冲裁件尺寸和形状、模具材料和加工方法、冲压方法及生产率等,灵活掌握、斟情增减。本模具所冲裁的材料为青铜,材料厚度为1mm,查表得:=0.17mm, =0.20mm.6.3 模具刃口尺寸的计算冲裁件的尺寸精度主要决定于模具刃口的尺寸精度,合理的间隙的数值也必须依靠模具刃口尺寸来保证。因此,正确确定模具刃口尺寸及其公差是设计冲裁模的主要任务之一。6.3.1计算原则由于凸、凹模之间存在间隙,所以冲裁件断面都是带有锥度的,且落料件的大端尺寸等于凹模尺寸,冲裁件的小端尺寸等于凸模尺寸。在测量与使用过程中,落料件是以大端尺寸为 基准,冲孔件孔径是以小端尺寸为基准。冲裁过程中,凸、凹模要与冲裁零件或废料发生摩擦,凸模越磨越小,凹模越磨越大,结果使间隙越用越大。因此,在确定凸、凹模刃口尺寸时,必须遵循下述原则:(1)落料模先确定凹模尺寸,其标称尺寸应取接近或者等于制件的最小极限尺寸,以保证凹模磨损到一定尺寸范围内,也能冲出合格制件,凸模刃口的标称尺寸比凹模小一个最小合理间隙。(2)冲裁模先确定凸模刃口尺寸,其标称尺寸应接近或者等于制件的最大极限尺寸,以保证凸模磨损到一定尺寸范围内,也能冲出合格的孔。凹模刃口的标称尺寸应比凸模大一个最小合理间隙。(3)选择模具刃口制造公差时,要考虑工件精度与模具精度的关系,既要保证工件的精度要求,又要保证有合理的间隙值。一般冲裁件精度较工件精度高23级。若零件没有标注意公差,则对于非圆形件按国家标准非配合尺寸的IT14级精度来处理,圆形件一般可按IT10级精度来处理,工件尺寸公差应按“入体”原则标注为单向公差,所谓“入体”原则是指标注工件尺寸时应向材料实体方向单向标注,即:落料件正公差为零,只标注负公差;冲孔件负公差为零,只标注正公差。6.3.2计算方法模具工作部分尺寸及公差的计算方法与加工方法有关,基本上可分为两类。1.凸模与凹模分开加工 凸、凹模分开加工,是指凸模和凹模分别按图样加工至尺寸。此种方法适用于圆形或形状简单的工件,为了保证凸、凹模间隙小于最大合理间隙,不仅凸、凹模分别标注公差(凸模,凹模),而且要求有较高的制造精度,以满足如下条件或取也就是说,新制造的模具应该是,如图6-5所示。否则制造的模具间隙已超过允许的变动范围,影响模具的使用寿命。2.凸模与凹模配合加工 对于冲制件形状复杂或薄板制件的模具,其凸、凹模往往采用配合加工的方法。此方法是先加工好凸模(或凹模)作为基准件,然后根据此基准件的实际尺寸,配作凹模(或凸模),使他们保持一定距离。因此,只需在基准件上标注尺寸及公差,另一件只标注标称尺寸,并注明“尺寸按凸模(或凹模)配作,保证双面间隙”。这样。可放大基准件的制造公差。其公差不再受凸、凹模间隙大小的限制,制造容易,并容易保证凸、凹模间的间隙。图6.5 凸、凹分别加工时的间隙变化范围由于复杂形状工件各部分尺寸性质不同,凸模和凹模磨损后,尺寸变化趋势不同,所以基准件的刃口尺寸计算方法也不相同。6.4级进模的各个工位冲裁凸、凹模刃口尺寸计算凸模和凹模的刃口尺寸和公差,直接影响冲裁件的尺寸精度。模具的合理间隙值也靠凸凹模刃口尺寸及其公差来保证。因此,正确确定凸凹模刃口尺寸和公差,是冲裁模具设计中的一项重要工作。凸模、凹模工作部分尺寸即凸、凹模刃口尺寸的计算,有两种计算方法,第一种计算方式是凸模与凹模图样分别加工法计算;第二种计算方法是凸模与凹模配作法。该冲件尺寸较多,若采用分开加工法计算,计算繁琐,且计算量较大,不宜采用,故采用第二种算法:凸模与凹模配作法。(1)凸模或凹模磨损后会增大的尺寸-第一类尺寸AAj=(Amax-x)(2) 凸模或凹模磨损后会减小的尺寸-第一类尺寸BBj=(Bmin+x)(3)凸模或凹模磨损后基本不变的尺寸-第一类尺寸C Cj=(Cmin+)其中,x为磨损系数。查表得:工件精度IT10级以上 x=1工件精度 IT1-IT13 x=0.75工件精度 IT14 x=0.5因为本工件尺寸均为基本尺寸,故按IT14级精度,x=0.5。在所有的尺寸中,属于A类尺寸的有:、;属于B类尺寸的有:、;属于C类尺寸的有:5.50.2注:凸模或凹模磨损后将会增大的尺寸第一类尺寸A。凸模或凹模磨损后将会减小的尺寸第二类尺寸B。凸模或凹模磨损后会基本不变的尺寸第三类尺寸C。具体计算如表5-3。表 6-2 工作零件刃口尺寸计算尺寸类型公称尺寸公式计算后尺寸落料5.50.25.50.05冲孔其中,x为磨损系数。查表得:工件精度IT10级以上 x=1工件精度 IT1-IT13 x=0.75工件精度 IT14 x=0.5本工件取IT12级精度,故,x=0.75。7 模具结构设计和主要零、部件设计凡属模具,无论其结构形式如何,一般都是由固定和活动两部分组成。固定部分是用压铁、螺栓等紧固件固定在压力机工作台面上,称下模;活动部分一般固定在压力机的滑块上,称上模。上模随着滑块做上、下往复运动,从而进行冲压工作。一套模具根据其复杂程度不同,一般由数个、数十个甚至更多的零件组成。但无论其复杂程度如何,或是哪种形式,根据模具零件的作用可以分成五种类型的零件。1工作零件 是完成冲压工作的零件,如凸模、凹模、凸凹模等。2定位零件 这些零件的作用是保证送料时有良好的导向和控制送料的进距,如挡料销、定距侧刀、导正销、定位板、导料板、侧压板等。3卸料、推件零件 这些零件的作用是保证在冲压工序完毕后将制件和废料排除,以保证下一次冲压工序顺利进行。如推件器、卸料板、废料切刀等。4导向零件 这些零件的作用是保证上模与下模相对运动时有精确的导向,使凸模、凹模间有均匀的间隙,提高冲压件的质量。如导柱、导套、导板等。5安装、固定零件 这些零件的作用是使上述四部分零件联结成“整体”,以保证各零件间的相对位置,并使模具能安装在压力机上。如上模板、下模板、模柄、固定板、垫板、螺钉、圆柱销等。对于试制或小批量生产的情况,为了缩短生产周期、节约成本,可把模具简化成只有工作部分零件如凸模、凹模、和几个固定部分零件即可;而对于大批量生产,为了提高生产率,除做成包括上述零件的冲模外,甚至还附加自动送、退料装置等。本模具为级进模,结构较复杂,上述五部分零件均有。下面进行各部分零件的设计与标准件选择。7.1 凹模周界的确定根据排样图,凹模周界,初选凹模周界为。7.2 模座及导套的选取根据文献续表选取其推荐模架见表7-1,其中模架选用滑动导向后侧导柱模架。表7-1 模架组合名 称数 量材 料规 格标 准上模座1下模架1导 柱1120导 套11207.3 模柄的选用 压力机模柄孔尺寸(直径深度):,为使模具所选用的模柄能很好的与压力机配合,保证模具能正常工作,根据文献7第586页表22.5-24选用A型压入式模柄,规格为,材料为。若选用凸缘模柄,会造成模柄与模具的固定螺钉干涉,故不选用。若选用其他种类的模柄,会造成模具的成本增加,模具结构复杂。7.4 冲裁凸、凹模结构设计冲裁模的结构设计主要有:凸模、凹模的固定形式的设计;凹模刃口形式设计;凹模外形和尺寸的确定;凸模长度的确定及其强度校核;凸模、凹模的镶块结构等五部分。7.4.1模具材料选择与热处理模具材料的选择是否正确不仅影响到模具使用寿命,也影响着制件的生产质量。应该根据模具制造条件、模具工作条件、模具材料的基本性能等相关因素,来选择经济、先进、适用的模具材料。选材时必须兼顾模具使用性能要求。对于冷冲模应主要考虑钢的强度、韧性和耐磨性。强度与韧性以及韧性与耐磨性之间往往此消彼长。当模具的主要失效方式是脆性开裂时可考虑选择强度较低但韧性更好的材料或制订合理的热处理工艺以改善钢的韧性,亦可根据实际情况选择同时具有高强度与高韧性的高级合金钢。从兼顾韧性和耐磨性的角度除了整体合理选材外,亦可考虑在保证韧性的同时,采用合理的表面处理以改善模具的耐磨性。塑料模具钢选用时要兼顾其在塑料成形温度下的强度、耐磨性和耐蚀性,同时还应考虑其加工性能和镜面度。热处理不当是导致模具早期失效的重要因素。热处理对模具寿命的影响主要反映在热处理技术要求不合理和热处理质量不良两个方面。统计资料表明,由于选材和热处理不当,致使模具早期失效的约占70。7.4.2 钢的性能钢C含量0.9%1.05%,Mn含量0.8%1.1%,Si含量0.15%0.35%,Cr含量0.9%1.2%,淬火温度820840,HRC不低于62,回火温度140160,HRC6265(查文献2第126页)。具有高淬透性、高硬度和耐磨性,淬火尺寸稳定性好,变形小,并有效好的韧性。由于钨形成碳化物,这种钢在淬火和低温回火后具有比铬钢和 9SiCr 钢更多的过剩碳化物和更高的硬度及耐磨性。此外,钨还有助于保存细小晶粒,从而使钢获得较好的韧性。所以由 钢制成的刃具,崩刃现象较少,并能较好地保持刀刃形状和尺寸。但是,钢对形成碳化物网比较敏感,这种网的存在,就使工具刃部有剥落的危险,从而使工具的使用寿命缩短,因此,有碳化物网的钢,必须根据其严重程度进行锻压和正火。这种钢用来制造在工作时切削刃口不剧烈变热的工具和淬火时要求不变形的量具和刃具,例如制作刀、长冲裁模的工作零件对材料性能特殊要求,冲裁模的刃口在工作时受到强烈的摩擦和冲击,所以其模具材料应该具有高的耐磨性、冲击韧性以及耐疲劳断裂性能。 由于该模具模具工作刃口形状较简单且尺寸较小,故采用材料,热处理HRC6064。7.4.3凹模刃口形式的确定凹模刃口通常有如图7-1所示的几种形式。图7.1 凹模刃口形式 图a的特点是刃边强度较好该刃口形式的特点是刃边强度较好,刃磨后工作部分尺寸不变,但洞口易积存废料或制件,推件力大且磨损撒,刃磨时磨去的尺寸
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:单孔E字山形片(BS13-F21) 钣金成形工艺及冲压模具设计-级进模含9张CAD图.zip
链接地址:https://www.renrendoc.com/p-42635975.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!