高中数学 第二章 圆锥曲线与方程 2.1.1 椭圆的定义与标准方程课件 湘教版选修21.ppt_第1页
高中数学 第二章 圆锥曲线与方程 2.1.1 椭圆的定义与标准方程课件 湘教版选修21.ppt_第2页
高中数学 第二章 圆锥曲线与方程 2.1.1 椭圆的定义与标准方程课件 湘教版选修21.ppt_第3页
高中数学 第二章 圆锥曲线与方程 2.1.1 椭圆的定义与标准方程课件 湘教版选修21.ppt_第4页
高中数学 第二章 圆锥曲线与方程 2.1.1 椭圆的定义与标准方程课件 湘教版选修21.ppt_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2 1椭圆2 1 1椭圆的定义与标准方程 2 1 1 课堂互动讲练 知能优化训练 课前自主学案 学习目标 1 了解椭圆的实际背景 经历从具体情境中抽象出椭圆的过程 椭圆标准方程的推导与化简过程 2 掌握椭圆的定义 标准方程及几何图形 课前自主学案 1 经过 1 3 2 5 的直线方程为 2 与定点的距离等于定长的点的轨迹是圆 3 已知p1 1 1 p2 2 5 则p1在圆 x 1 2 y2 1上 而p2不在圆 x 1 2 y2 1上 2x y 1 0 1 椭圆的定义平面上到两个定点f1 f2的距离之和为 大于 f1f2 的点的轨迹叫作椭圆 这两个定点f1 f2叫作椭圆的 两焦点之间的距离叫作椭圆的 固定值 焦点 焦距 1 平面内动点m满足 mf1 mf2 2a 当2a f1f2 时 点m的轨迹是什么 当2a f1f2 时呢 提示 当2a f1f2 时 点m的轨迹是线段f1f2 当2a f1f2 时 不表示任何轨迹 思考感悟 2 椭圆的标准方程 c 0 0 c 2 椭圆的两种标准方程有什么相同点和不同点 提示 相同点 它们的大小和形状都相同 都有a b 0 a2 b2 c2 焦距都是2c 椭圆上的点到两焦点距离的和均为2a 不同点 两类椭圆的焦点位置不同 即焦点所在坐标轴不同 因此焦点坐标也不相同 焦点在x轴上的两焦点坐标分别为 c 0 和 c 0 焦点在y轴上的两焦点坐标分别为 0 c 和 0 c 思考感悟 课堂互动讲练 思路点拨 求椭圆的标准方程时 要先判断焦点位置 确定出适合题意的椭圆标准方程的形式 最后由条件确定出a和b即可 椭圆上一点p与椭圆的两焦点f1 f2构成的 f1pf2称为焦点三角形 解关于椭圆中的焦点三角形问题时要充分利用椭圆的定义 三角形中的正弦定理 余弦定理等知识 已知椭圆的焦点是f1 1 0 f2 1 0 p为椭圆上一点 且 f1f2 是 pf1 和 pf2 的等差中项 1 求椭圆的方程 2 若点p在第二象限 且 pf1f2 120 求 pf1f2的面积 思路点拨 求得标准方程后 借助定义利用余弦定理求值 用定义法求椭圆方程的思路是 先观察 分析已知条件 看所求动点轨迹是否符合椭圆的定义 若符合椭圆的定义 则用待定系数法求解即可 名师点评 1 本例用定义法求轨迹方程 2 巧妙地应用几何知识 两圆内切时圆心距与半径之间的关系 寻求到 ma mb 8 而且8 ab 6 从而判断动点m的轨迹是椭圆 1 椭圆的定义中只有当两定点间的距离之和2a f1f2 时 轨迹才是椭圆 2a f1f2 时 轨迹是线段f1f2 2a f1f2 时没有轨迹 2 求椭圆标准方程时应注意的问题 1 确定椭圆的标准方程包括 定位 和 定量 两个方面 定位 是指确定椭圆与坐标系的相对位置

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论