选修数学知识点.doc_第1页
选修数学知识点.doc_第2页
选修数学知识点.doc_第3页
选修数学知识点.doc_第4页
选修数学知识点.doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

12、椭圆的几何性质:焦点的位置焦点在轴上焦点在轴上图形标准方程范围且且顶点、轴长短轴的长 长轴的长焦点、焦距对称性关于轴、轴、原点对称离心率14、平面内与两个定点,的距离之差的绝对值等于常数(小于)的点的轨迹称为双曲线这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距15、双曲线的几何性质:焦点的位置焦点在轴上焦点在轴上图形标准方程范围或,或,顶点、轴长虚轴的长 实轴的长焦点、焦距对称性关于轴、轴对称,关于原点中心对称离心率准线方程20、焦半径公式:若点在抛物线上,焦点为,则;若点在抛物线上,焦点为,则;若点在抛物线上,焦点为,则;若点在抛物线上,焦点为,则21、抛物线的几何性质:标准方程图形顶点对称轴轴轴焦点准线方程基本初等函数的导数公式:1若(c为常数),则;2 若,则;3 若,则 4 若,则;5 若,则 6 若,则7 若,则 8 若,则导数的运算法则1. 2. 3. 复合函数求导和,称则可以表示成为的函数,即为一个复合函数考点一:复数的概念3 复数:形如的数叫做复数,和分别叫它的实部和虚部.4 分类:复数中,当,就是实数; ,叫做虚数;当时,叫做纯虚数.5 复数相等:如果两个复数实部相等且虚部相等就说这两个复数相等.6 共轭复数:当两个复数实部相等,虚部互为相反数时,这两个复数互为共轭复数.7 复平面:建立直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴除去原点的部分叫做虚轴。8 两个实数可以比较大小,但两个复数如果不全是实数就不能比较大小。考点二:复数的运算1.复数的加,减,乘,除按以下法则进行设则2,几个重要的结论(1) (2) (3)若为虚数,则概率与统计11、二项分布: 设在n次独立重复试验中某个事件A发生的次数,A发生次数是一个随机变量如果在一次试验中某事件发生的概率是p,事件A不发生的概率为q=1-p,那么在n次独立重复试验中 (其中 k=0,1, ,n,q=1-p )于是可得随机变量的概率分布如下:这样的随机变量服从二项分布,记作B(n,p) ,其中n,p为参数12、数学期望:一般地,若离散型随机变量的概率分布为则称 Ex1p1x2p2xnpn 为的数学期望或平均数、均值,数学期望又简称为期望是离散型随机变量。13、方差:D()=(x1-E)2P1+(x2-E)2P2 +.+(xn-E)2Pn 叫随机变量的均方差,简称方差。14、集中分布的期望与方差一览:期望方差两点分布E=pD=pq,q=1-p二项分布, B(n,p)E=np D=qE=npq,(q=1-p)15、正态分布:若概率密度曲线就是或近似地是函数 的图像,其中解析式中的实数是参数,分别表示总体的平均数与标准差则其分布叫正态分布,f( x )的图象称为正态曲线。 16、基本性质:曲线在x轴的上方,与x轴不相交曲线关于直线x=对称,且在x=时位于最高点.当时,曲线上升;当时,曲线下降并且当曲线向左、右两边无限延伸时,以x轴为渐近线,向它无限靠近 当一定时,曲线的形状由确定越大,曲线越“矮胖”,表示总体的分布越分散;越小,曲线越“瘦高”,表示总体的分布越集中当相同时,正态分布曲线的位置由期望值来决定.正态曲线下的总面积等于1.17、 3原则:从上表看到,正态总体在 以外取值的概率 只有4.6%,在 以外取值的概率只有0.3% 由于这些概率很小,通常称这些情况发生为小概率事件.也就是说,通常认为这些情况在一次试验中几乎是不可能发生的极坐标与参数方程5极坐标与直角坐标的互化:6。圆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论