已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 第九章练习题参考解答第九章练习题参考解答 练习题练习题 9 19 19 19 1 设真实模型为无截距模型 22ii YXu 回归分析中却要求截距项不能为零 于是 有人采用的实证分析回归模型为 122ii YX 试分析这类设定误差的后果 9 29 29 29 2 资本资产定价模型资本资产定价模型现代投资理论中的资本资产定价模型 CAPM 设定 一定时期内 的证券平均收益率与证券波动性 通常由贝塔系数 度量 有以下关系 12iii Ru 1 其中 i Ri 证券的平均收益率 i i 证券的真正 系数 i u 随机扰动项 由于i 证券的真正 系数不可直接观测 通常采用下式进行估算 1 i itmt rre 2 其中 it rti 时间 证券的收益率 i m rt 时间 的市场收益率 通常是某个股票市场的综合 指数的收益率 t e 残差项 是真正 系数的一个估计值 且有 1ii v i v是观 测误差 在实际的分析中 我们采用的估计式不是 1 而是 12iii Ru 3 1 观测误差 i v对 2 的估计会有什么影响 2 从 3 估计的 2 会是真正 2 的一个无偏估计吗 若不是 会是真正 2 的一致性 估计吗 9 39 39 39 31978 年 2003 年的全国居民消费水平与国民收入的数据如下 年份 国民总收 入 GNI 国内生产 总值 GDP 全国居民消 费水平 CT 农村居民消 费水平 CN 城镇居民消 费水平 CC 19783624 13624 1184138405 19794038 24038 2207158434 19804517 84517 8236178496 19814860 34862 4262199562 19825301 85294 7284221576 2 19835957 45934 5311246603 19847206 77171 0327283662 19858989 18964 4437347802 198610201 410202 2485376805 198711954 511962 55504171089 198814922 314928 36935081431 198916917 816909 27625531568 199018598 418547 98035711686 199121662 521617 88966211925 199226651 926638 110707182356 199334560 534634 413318553027 199446670 046759 4174611183891 199557494 958478 1223614344874 199666850 567884 6264117685430 199773142 774462 6283418765796 199876967 278345 2297218956217 199980579 482067 5313819276796 200088254 089468 1339720377402 200195727 997314 8360921567761 2002103935 3105172 3381822698047 2003116603 2117251 9408923618471 若依据弗里德曼的持久收入假设 消费函数的真正模型应为 iii CCGNIu 1 试用 Eviews 软件 采用两种以上检验方法对实证分析模型 12iii CCGDP 进行变量设定检验 2 若 iii GNIGDP 试用 Eviews 软件 采用两种以上检验方法对实证分析模型 12iii CCGDP 进行测量误差检验 9 49 49 49 4 考虑真正的 Cobb Douglas 生产函数 121324 lnlnlnln iiiii YLLKu 其中 Y 产出 1 L 生产性劳力 2 L 非生产性劳力 K 资本 若在对横截面数据进行的实证分析中 采用的回归模型是 1213 lnlnln iiii YLKu 试问 1 表达式 22 E 和 34 E 成立吗 3 2 若已经知道 2 L是生产函数中的一个无关变量 1 中答案是否也成立 9 59 59 59 5 假设制造业企业工人的平均劳动生产率 Y 与工人的平均培训时间 t 和平均能力 X 之间存在依存关系 可建立如下的的回归模型 012 YtXu 若政府给那些工人能力低的企业以政府培训补助 则平均培训时间就和工人平均能力负相 关 现在考虑这个因素 采用如下模型进行回归 01 Yt 问由此获得的 1 会有怎样的偏误 练习题参考解答练习题参考解答 练习题练习题 9 19 19 19 1 参考解答参考解答 实证分析回归模型中 2 的估计为 22222 2 2 2 222 222 iii ii ii iii xXuXuxYY x y xxx 22222 2 2 iiii i xXXxuu x 2 222 2 2 iii i xxuu x 2 2 2 2 ii i xuu x 于是 有 22 2222 22 22 iiii ii xuuxuu EEE xx 1222222222 YXXuXXu 1222 0EEXu 从参数估计的方差看 4 2 2 2 2i Var x 2 222 VarEE 注意到 22222 22 222 222 iiiiiii iii X YXXuX u XXX 2 222 2 2 ii i X u EE X 故有 222 22 2 222 222 222 iiii i i iii X uX u X VarEEEu XXX 2 222 222 222 iii iii iii XXX EuEuu XXX 记 2 2 2 i i i X C X 则有 22 22 22 ii ii ii XX Euu XX 2 ii ECu 2 1 1221 122 iinnnn CuC uC uC uC uC uC u 2 iiijij ij C uC C u u 2 2 iiiiijij ij EC uEC uEC C u u 2 22 2222 22 222 2 22 2 iiu iiuu ii i XX C Eu XX X 显然 22 22 22 u ii Xx 即 2 Var 不是 2 Var 的无偏估计 同时 22 u 同理 可对 1 Var 进行类似的讨论 练习题练习题 9 39 39 39 3 参考解答参考解答 一 变量设定误差检验 5 对 12iii CCGDP 进行回归 用 EViews 运行过程及结果略 有 219 61420 076104 iii CCGDPe 57 4128 0 0011 t 3 8252 71 0331 2 0 9953R 2 0 9951R DW 0 6402F 5045 703 1 DW 检验 对于模型219 61420 07604 iii CCGDPe 在回归之后 若将差值 GNI GDP 认为是一个 变量 则在 Eviews 的命令行键入 GENR z GNI GDP 生成遗漏变量 z 遗漏变量 z 和残差序 列如表所示 表遗漏变量 z 和残差 i e obsGNIGDPZE 19783624 1003624 1000 000000 90 42379 19794038 2004038 2000 000000 92 93858 19804517 8004517 8000 000000 67 43820 19814860 3004862 400 2 100000 27 66375 19825301 8005294 7007 100000 46 56363 19835957 4005934 50022 90000 68 25517 19847206 7007171 00035 70000 103 3581 19858989 1008964 40024 70000 99 84359 198610201 4010202 20 0 800000 191 0455 198711954 5011962 50 8 000000 41 01189 198814922 3014928 30 6 00000075 27798 198916917 8016909 208 60000061 52297 199018598 4018547 9050 5000054 81085 199121662 5021617 8044 7000060 17826 199226651 9026638 1013 80000109 1118 199334560 5034634 40 73 90000171 5590 199446670 0046759 40 89 40000112 7944 199557494 9058478 10 983 2000203 9509 199666850 5067884 60 1034 10044 07581 199773142 7074462 60 1319 900 90 53827 199876967 2078345 20 1378 00034 97917 199980579 4082067 50 1488 100330 6961 200088254 0089468 10 1214 100373 4786 200195727 9097314 80 1586 900135 3110 2002103935 3105172 3 1237 000 176 6785 2003116603 2117251 9 648 7000 671 9880 为了将残差序列 e 按照遗漏变量 z 值的递增次序排序 首先用 GENR 命令生成 z1 和 e1 然后在只有残差序列 e1 和遗漏变量 z1 的 Workfile 画面中 点击ProcSort Current Page 进入下一画面 点击 Yes 进入另一画面后 在 sort keys 的选项中键入 z1 并点击 OK 则对 e1 按 z1 值的递增次序进行了排序 6 按 z1 值的递增次序排序后的残差序列 e1 为 obsZ1E1 1 1586 900135 3110 7 2 1488 100330 6961 3 1378 00034 97917 4 1319 900 90 53828 5 1237 000 176 6785 6 1214 100373 4786 7 1034 10044 07581 8 983 2000203 9509 9 648 7000 671 9880 10 89 40000112 7944 11 73 90000171 5590 12 8 000000 41 01189 13 6 00000075 27798 14 2 100000 27 66375 15 0 800000 191 0455 160 000000 90 42379 170 000000 92 93858 180 000000 67 43820 197 100000 46 56363 208 60000061 52297 2113 80000109 1118 2222 90000 68 25517 2324 70000 99 84358 2435 70000 103 3581 2544 7000060 17826 2650 5000054 81085 按照公式 2 1 2 2 1 n ii i n i i ee d e 计算 d 即命令行键入 genr d1 e1 e1 1 2 genr d2 e1 2 分别生成公式中的分子分母求和号内的变量 然后 按图示操作 可得到分子分母的均值 8 D1D2 Mean86102 0236954 69 Median13523 338417 380 Maximum767269 0451567 9 Minimum6 324169765 2828 Std Dev 193771 090754 84 Skewness2 7266923 937520 Kurtosis9 14126018 21725 Jarque Bera70 26507318 0461 Probability0 0000000 000000 Sum2152550 960822 0 Sum Sq Dev 9 01E 112 06E 11 Observations2526 这时有 2152550 2 2403 960822 d 或者 25 86102 02 2 2403 26 36954 69 d 查 表 在0 05 显 著 水 平 下 26n 和 1k 时 有1 302 1 461 LU dd 4 U d 4 1 461 2 539 即 4 UU dd 1 461 2 539 2 2403d 落在无自相关区 表明遗漏变 量现象在统计意义上不显著 2 LM 检验 LM检验步骤为 1 对存在遗漏变量设定偏误的模型进行回归 得残差序列 i e 2 用残差序列 i e对全部的解释变量 包括遗漏变量 进行回归 得可决系数 2 R 3 设定 0 H 存在遗漏变量 1 H 无遗漏变量 构造检验统计量 9 22 ays nR 约束个数 其中 约束个数是 0 H中设定存在遗漏变量的个数 4 进行显著性检验的判断 若 22 nR 约束个数 则拒绝 0 H 否则 接受 1 H 用残差序列 i e对全部的解释变量 包括遗漏变量 进行回归 有 Dependent Variable E Method Least Squares Date 05 22 05Time 17 04 Sample 1978 2003 Included observations 26 VariableCoefficientStd Errort StatisticProb C51 3121953 854730 9527890 3506 GDP 0 0050200 002026 2 4775890 0210 GNI GDP 0 3472070 123961 2 8009400 0101 R squared0 254343Mean dependent var 8 75E 15 Adjusted R squared0 189503S D dependent var196 0431 S E of regression176 4929Akaike info criterion13 29261 Sum squared resid716444 1Schwarz criterion13 43777 Log likelihood 169 8039F statistic3 922632 Durbin Watson stat0 632468Prob F statistic 0 034214 计算 2 260 2543436 6129nR 查表 2 0 025 15 02389 显然 6 61295 02389 拒绝 0 H 存在遗漏变量的假设 接受 1 H无遗漏变量的假设 二 测量误差的检验 按照 Hausman 检验的步骤 有以下的 Eviews 计算结果 对模型 12iii CCGDP 进行回归 有 Dependent Variable CC Method Least Squares Date 05 22 05Time 17 19 Sample 1978 2003 Included observations 26 VariableCoefficientStd Errort StatisticProb C219 614257 412813 8251770 0008 GDP0 0761040 00107171 033110 0000 R squared0 995266Mean dependent var3196 615 10 Adjusted R squared0 995069S D dependent var2849 293 S E of regression200 0856Akaike info criterion13 50917 Sum squared resid960822 0Schwarz criterion13 60595 Log likelihood 173 6192F statistic5045 703 Durbin Watson stat0 640170Prob F statistic 0 000000 选择 GNI 作为 GDP 的工具变量 对模型 12 GDPGNI 进行回归 得残差序列 w Dependent Variable GDP Method Least Squares Date 05 22 05Time 17 30 Sample 1978 2003 Included observations 26 VariableCoefficientStd Errort StatisticProb C 147 603984 78554 1 7409090 0945 GNI1 0146090 001602633 29450 0000 R squared0 999940Mean dependent var39117 38 Adjusted R squared0 999938S D dependent var37350 59 S E of regression294 8823Akaike info criterion14 28483 Sum squared resid2086934 Schwarz criterion14 38161 Log likelihood 183 7028F statist
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论