全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
教学目标通过探索,领会并总结解二元一次方程组的方法。根据方程组的情况,能恰当地应用“代入消元法”解方程组;会借助二元一次方程组解简单的实际问题;提高逻辑思维能力、计算能力、解决实际问题的能力。教学重点难点以及措施重点是用代入法解二元一次方程组。难点是代入法的灵活运用,并能正确地选择恰当方法(代入法)解二元一次方程组。学习者分析让学生体会解二元一次方程组中的“消元”思想,即通过消元把解二元一次方程组转化成解两个一元一次方程。由此感受“划归”思想的广泛应用。二元一次方程组的解法教学设计教师姓名:刘学文学校:汉川市麻河镇小学授课年级:七年级科目:数学(请各位老师最后保存的时候以自己的姓名来命名文件)教学环节教学内容活动设计活动目标媒体使用及分析(交互式电子白板使用功能)创设情境,激趣导入出示例题在8.1中我们已经看到,直接设两个未知数(设胜x场,负y场),可以列方程组表示本章引言中问题的数量关系。如果只设一个未知数(设胜x场),这个问题也可以用一元一次方程_1来解。分析:12x(22x)=40。上面的二元一次方程组和一元一次方程有什么关系?2通过观察对照,可以发现,把方程组中第一个方程变形后代入第二个方程,二元一次方程组就转化为一元一次方程。这正是下面要讨论的内容。利用白板绘画功能,创设情景引发学生深层次思考。概念教学揭示概念可以发现,二元一次方程组中第1个方程xy=22说明y22x,将第2个方程2xy40的y换为22x,这个方程就化为一元一次方程2x(22x)40。解这个方程,得x18。把x18代入y=22x,得y4。从而得到这个方程组的解。(教师在课件中一步步导出过程)二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数。这种将未知数的个数由多化少、逐一解决的想法,叫做消元思想。33通过对上面具体方程组的讨论,归纳出“将未知数的个数由多化少、逐一解决”的消元思想,这是从具体到抽象,从特殊到一般的认识过程。所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元方程再解它。归纳上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法4 4这是对代入法的基本步骤的概括,代入法通过“把一个方程(必要时先做适当变形)代入另一个方程”进行等量替换,用含一个未知数的式子表示另一个未知数,从而实现消元倾听,理解,师生互动,学生边听边练倾听,理解全班齐读记忆同桌交流学习学生归纳展示交流成果其他同学倾听,理解教师总结学生倾听和理解概念利用电子白板的注释功能现场书写形成概念例题教学解题过程例1 用代入法解方程组分析:方程中x的系数是1,用含y的式子表示x,比较简便。解:由,得xy3。 把代入,得 (5把代入可以吗?试试看。) 3(y十3)一8y=14。解这个方程,得y一1。把y=l代入,得 (6把y1代入或可以吗?)x2所以这个方程组的解是5由于方程是由方程得到的,所以它只能代入方程,而不能代入。为使学生认识到这一点,可以让其试试把代入会出现什么结果。6得到一个未知数的值后,把它代入方程都能得到另一个未知数的值。其中代入方程最简捷。为使学生认识到这一点,可以让其试试各种代入法。例2 根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250 g)两种产品的销售数量比(按瓶计算)为2:5。7某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶装两种产品各多少瓶? 7两种产品的销售数量比为2:5,即销售的大瓶数目与小瓶数目的比为2:5。这里的数目以瓶为单位。分析:问题中包含两个条件:大瓶数:小瓶数2:5,大瓶所装消毒液小瓶所装消毒液=总生产量。解:设这些消毒液应分装x大瓶和y小瓶。根据大、小瓶数的比以及消毒液分装量与总生产量的相等关系,得由,得把代入,得解这个方程,得x=20 000。把x=20 000代入,得y=50 000,这个方程组的解是答:这个工厂一天应生产20 000大瓶和50 000小瓶消毒液。思考独立完成老师与个别学生互动适时指导同桌交流选同学分析和回答解题过程同学回答正确适当表扬后提问5 6学生尝试并给出回答学生自由读题,分析条件,列出方程组并解答用展台展示几个具有典型性的同学的解答过程,讲解时注重思路和格式.利用电子白板的图片展示功能与显露功能。代入法解题步骤上面解方程组的过程可以用下面的框图表示解这个方程时,可以先消去x吗?试试看解这个方程时,可以先消去x吗?试试看这个框图以用代入法解一个具体的二元一次方程组的过程为例,展示了代入法的解题步骤,以及各步骤的作用。照相机功能:图片基本都是运用拍照功能中的点到点剪切出来的。巩固练习课本课本103页习题8.2第2题学生观察集全评议动手实践小结1解二元一次方程组的思想:2引导学生总结出用代入法解二元一次方程组的解题步骤。3用代入法解二元一次方程组的技巧:变形的技巧; 代入
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年二级建造师考试试题一【巩固】附答案详解
- 二造基础知识试题及答案解析(版)
- 国家开放大学电大《合同法》机考2套真题题库及答案6
- 初三安全第一课课件
- 会计专业自荐信
- 开学第一课主题班会主要内容15篇
- 房地产行业土建工程师面试实战案例分析及答案解析
- 执业药师考试真题中药学专业知识一
- 技术经济学试题库及答案解析
- 护理质控试题及答案
- 车辆矿石运输合同范本
- 《关节镜小知识》课件
- 2025风电机组无人机巡检技术方案
- 《建筑节能工程施工质量验收规程》(DGJ08-113-2017)
- 药企地区经理胜任力
- 动物医学专业职业生涯规划
- 【MOOC】美术鉴赏-河南理工大学 中国大学慕课MOOC答案
- 安徽工业大学《机械制图》2021-2022学年第一学期期末试卷
- 作业展评评分表
- 员工短视频出镜协议书模板
- DBJ 53∕T-23-2014 云南省建筑工程施工质量验收统一规程
评论
0/150
提交评论