




文档简介
APracticalApproachtoVibrationDetectionandMeasurementPhysicalPrinciplesandDetectionTechniquesBy: JohnWilson, theDynam ic Consultant, LLCThistutorial addressesthephysicsofvibration; dynam ics ofaspringm asssystem ; dam ping; displacem ent, velocity,andacceleration; andtheoperatingprinciplesofthesensorsthat detect andm easure theseproperties.Vibrationisoscillatorym otion resultingfrom theapplicationofoscillatoryorvaryingforcestoastructure. Oscillatorym otion reversesdirection. Asweshall see,theoscillationm ay becontinuousduringsom e tim e periodofinterest orit m ay beinterm ittent. It m ay beperiodicornonperiodic, i.e., it m ay orm ay not exhibitaregularperiodofrepetition. Thenatureoftheoscillationdependsonthenatureoftheforcedrivingit andonthestructurebeingdriven.Motionisavectorquantity, exhibitingadirectionaswell asam agnitude. Thedirectionofvibrationisusuallydescribedinterm s ofsom e arbitrarycoordinatesystem (typicallyCartesianororthogonal)whosedirectionsarecalledaxes. Theoriginfortheorthogonal coordinatesystemofaxesisarbitrarilydefinedat som econvenient location.Most vibratoryresponsesofstructurescanbem odeled assingle-degree-of-freedom springm asssystem s, andm any vibrationsensorsuseaspringm ass system asthem echanical partoftheirtransductionm echanism . Inadditiontophysical dim ensions, aspringm ass system canbecharacterizedbythestiffnessofthespring, K, andthem ass, M,orweight, W, ofthem ass. Thesecharacteristicsdeterm ine not onlythestaticbehavior(staticdeflection, d)ofthestructure, but alsoitsdynam iccharacteristics. Ifgistheaccelerationofgravity:F=MAW=MgK=F/d=W/dd=F/K=W/K=Mg/KDynamicsofaSpringMassSystemThedynam ics ofaspringm ass system canbeexpressedbythesystem s behaviorinfreevibrationand/orinforcedvibration.FreeVibration. Freevibrationisthecasewherethespringisdeflectedandthenreleasedandallowedtovibratefreely.Exam ples includeadivingboard, abungeejum per, andapendulum orswingdeflectedandleft tofreelyoscillate.Twocharacteristicbehaviorsshouldbenoted. First, dam ping inthesystemcausestheam plitude oftheoscillationstodecreaseovertim e. Thegreaterthedam ping, thefastertheam plitudedecreases. Second, thefrequencyorperiodoftheoscillationisindependent ofthem agnitude oftheoriginal deflection(aslongaselasticlim its arenot exceeded).Thenaturallyoccurringfrequencyofthefreeoscillationsiscalledthenaturalfrequency, fn:ForcedVibration. Forcedvibrationisthecasewhenenergyiscontinuouslyaddedtothespringm ass system byapplyingoscillatoryforceat som e forcingfrequency, ff. Twoexam ples arecontinuouslypushingachildonaswingandanunbalancedrotatingm achineelem ent. Ifenoughenergytoovercom e thedam ping isapplid, them otion willcontinueaslongastheexcitationcontinues.Forcedvibrationm ay taketheform ofself-excitedorexternallyexcitedvibration.Self-excitedvibrationoccurswhentheexcitationforceisgeneratedinoronthesuspendedm ass; externallyexcitedvibrationoccurswhentheexcitationforceisappliedtothespring. Thisisthecase, forexam ple, whenthefoundationtowhichthespringisattachedism oving.Transmissibility. Whenthefoundationisoscillating, andforceistransm ittedthroughthespringtothesuspendedm ass,them otion ofthem ass will bedifferentfrom them otion ofthefoundation. Wewillcall them otion ofthefoundationtheinput,I, andthem otion ofthem ass theresponse,R. TheratioR/Iisdefinedasthetransm issibility, Tr:Tr=R/IResonance. At forcingfrequencieswell belowthesystem s natural frequency,RI, andTr 1. Astheforcingfrequencyapproachesthenatural frequency,transm issibility increasesduetoresonance.Resonanceisthestorageofenergyinthem echanical system . At forcingfrequenciesnearthenatural frequency, energyisstoredandbuildsup, resultinginincreasingresponseam plitude. Dam ping alsoincreaseswithincreasingresponseam plitude, however, andeventuallytheenergyabsorbedbydam ping, percycle,equalstheenergyaddedbytheexcitingforce, andequilibrium isreached. Wefindthepeaktransm issibility occurringwhenff fn. Thisconditioniscalledresonance.Isolation. Iftheforcingfrequencyisincreasedabovefn, Rdecreases. Whenff =1.414fn, R=IandTr=1; at higherfrequenciesR0.1in., tom ake them practical.Thechangeinintensityorangleofalight beam directedontoareflectivesurfacecanbeusedasanindicationofitsdistancefrom thesource. Ifthedetectionapparatusisfast enough, changesofdistancecanbedetectedaswell.Them ost sensitive, accurate, andpreciseoptical deviceform easuringdistanceordisplacem ent isthelaserinterferom eter. Withthisapparatus, areflectedlaserbeam ism ixed withtheoriginal incident beam . Theinterferencepatternsform ed bythephasedifferencescanm easure displacem ent downto1MHzinsom e PRshockaccelerom eters.Most contem porary PRsensorsarem anufactured from asinglepieceofsilicon.Ingeneral, theadvantagesofsculptingthewholesensorfrom onehom ogeneous blockofm aterial arebetterstability, lesstherm alm ism atch betweenparts, andhigherreliability. Underdam ped PRaccelerom eters tendtobelessruggedthanPEdevices. Single-crystal siliconcanhaveextraordinaryyieldstrength, particularlywithhighstrainrates, but it isabrittlem aterial nonetheless. Internal frictioninsiliconisverylow, soresonanceam plification canbehigherthanforPEtransducers. Boththesefeaturescontributetoitscom parative fragility, althoughifproperlydesignedandinstalledtheyareusedwithregularitytom easure shockswell above100,000g. TheygenerallyhavewiderbandwidthsthanPEtransducers(com paring m odels ofsim ilar full-scalerange), aswell assm aller nonlinearities,zeroshifting, andhysteresischaracteristics.BecausetheyhaveDCresponse, theyareusedwhenlong-durationm easurem ents aretobem ade.Inatypical m onolithic siliconsensingelem ent ofaPRaccelerom eter, the1m msquaresiliconchipincorporatestheentirespring, m ass, andfour-arm PRstraingaugebridgeassem bly. Thesensorism ade fromasingle-crystal siliconbym eans ofanisotropicetchingandm icrom achiningtechniques. Straingaugesareform ed byapatternofdopant intheoriginallyflatsilicon. Subsequent etchingofchannelsfreesthegaugesandsim ultaneouslydefinesthem asses assim ply regionsofsiliconoforiginal thickness.Thebridgecircuit canbebalancedbyplacingcom pensation resistor(s)inparallelorserieswithanyofthelegs, correctingforthem atching ofeithertheresistancevaluesand/orthechangeofthevalueswithtem perature. Com pensation isanart;becausethePRtransducercanhavenonlinearcharacteristics, it isinadvisabletooperateit withexcitationdifferent fromtheconditionsunderwhichit wasm anufactured orcalibrated. Forexam ple,PRsensitivityisonlyapproxim atelyproportional toexcitation, whichisusuallyaconstant voltageor, insom e cases,constant current, whichhassom eperform ance advantages. Becausetherm alperform ance will ingeneral changewithexcitationvoltage, thereisnot apreciseproportionalitybetweensensitivityandexcitation. Anotherprecautionindealingwithvoltage-drivenbridges, particularlythosewithlowresistance, istoverifythatthebridgegetstheproperexcitation. Theseriesresistanceoftheinput leadwiresactsasavoltagedivider. Takecarethat theinput leadwireshavelowresistance, orthat asix-wirem easurem ent bem ade (withsenselinesat thebridgetoallowtheexcitationtobeadjusted)sothebridgegetstheproperexcitation.Constant current excitationdoesnothavethisproblem withseriesresistance.However, PRtransducersaregenerallycom pensated assum ing constant voltageexcitationandm ight not givethedesiredperform ance withconstant current. ThebalanceofthePRbridgeisitsm ostsensitivem easure ofhealth, andisusuallythedom inant featureinthetotaluncertaintyofthetransducer. Thebalance,som etim es calledbias, zerooffset, orZMO(zerom easurand output, theoutput with0g), canbechangedbyseveral effectsthatareusuallytherm al characteristicsorinternallyorexternallyinducedshiftsinstrainsinthesensors. Transducercasedesignsattem pt toisolatethesensorsfromexternal strainssuchastherm al transients,basestrain, orm ounting torque. Internalstrainchanges, e.g., epoxycreep, tendtocontributetolong-term instabilities. Allthesegenerallylow-frequencyeffectsarem ore im portant forDCtransducersthanforAC-coupleddevicesbecausetheyoccurm ore ofteninthewiderfrequencybandoftheDC-coupledtransducer.Som e PRdesigns, particularlyhigh-sensitivitytransducers, aredesignedwithdam ping toextendfrequencyrangeandoverrangecapability. Dam pingcoefficientsof0.7areconsideredideal.Suchdesignsoftenuseoil orsom e otherviscousfluid. Twocharacteristicsdictatethat thetechniqueisuseful onlyatrelativelylowfrequencies: dam ping forcesareproportional toflowvelocity, andadequateflowvelocityisattainedbypum ping thefluidwithlargedisplacem ents.Thisisahappycoincidenceforsensitivetransducersinthat theyoperateat thelowaccelerationfrequencieswheredisplacem ents areadequatelylarge.Viscousdam ping caneffectivelyelim inateresonanceam plification, extendtheoverrangecapability, andm ore thandoubletheuseful bandwidth. However, becausetheviscosityofthedam ping fluidisastrongfunctionoftem perature, theusefultem perature rangeofthetransducerissubstantiallylim ited.VariableCapacitance. VCtransducersareusuallydesignedasparallel-plateairgapcapacitorsinwhichm otion isperpendiculartotheplates. Insom e designstheplateiscantileveredfromoneedge, som otion isactuallyrotation;otherplatesaresupportedaroundtheperiphery, asinatram poline. ChangesincapacitanceoftheVCelem ents duetoaccelerationaresensedbyapairofcurrentdetectorsthat convert thechangesintovoltageoutput. ManyVCsensorsarem icrom achined asasandwichofanisotropicallyetchedsiliconwaferswithagaponlyafewm icrons thicktoallowairdam ping. Thefact that airviscositychangesbyjust afewpercent overawideoperatingtem perature rangeprovidesafrequencyresponsem ore stablethanisachievablewithoil-dam ped PRdesigns.InaVCaccelerom eter, ahigh-frequencyoscillatorprovidesthenecessaryexcitationfortheVCelem ents.Changesincapacitancearesensedbythecurrent detector. Output voltageisproportional tocapacitancechanges, and,therefore, toacceleration. Theincorporationofovertravel stopsinthegapcanenhanceruggednessinthesensitivedirection, althoughresistancetooverrangeintransversedirectionsm ust relysolelyonthestrengthofthesuspension, asistrueofall othertransducerdesignswithoutovertravel stops. Som e designscansurviveextrem ely highaccelerationoverrangeconditions-asm uch as1000full-scalerange.Thesensorofatypicalm icrom achined VCaccelerom eter isconstructedofthreesiliconelem entsbondedtogethertoform aherm eticallysealedassem bly. Twooftheelem ents aretheelectrodesofanairdielectric,parallel-platecapacitor. Them iddleelem ent ischem ically etchedtoform arigidcentral m ass suspendedbythin,flexiblefingers. Dam ping characteristicsarecontrolledbygasflowintheorificeslocatedonthem ass.VCsensorscanprovidem any ofthebest featuresofthetransducertypesdiscussedearlier: largeoverrange, DCresponse, low-im pedance output, andsim ple external signal conditioning.Disadvantagesarethecost andsizeassociatedwiththeincreasedcom plexityoftheonboardconditioning. Also,high-frequencycapacitancedetectioncircuitsareused, andsom e ofthehigh-frequencycarrierusuallyappearsontheoutput signal. It isgenerallynot evennoticed, beinguptothreeordersofm agnitude (i.e., 1000)higherinfrequencythantheoutput signals.Servo(ForceBalance). Althoughservoaccelerom eters areusedpredom inantly ininertial guidancesystem s,som e oftheirperform ance characteristicsm ake them desirableincertainvibrationapplications. All theaccelerom eter typesdescribedpreviouslyareopen-loopdevicesinwhichtheoutput duetodeflectionofthesensingelem ent isreaddirectly. Inservo-controlled, orclosed-loop,accelerom eters, thedeflectionsignal isusedasfeedbackinacircuit that physicallydrivesorrebalancesthem ass backtotheequilibrium position. Servoaccelerom eterm anufacturers suggest that open-loopinstrum ents that relyondisplacem ent (i.e.,strainingofcrystalsandpiezoresistiveelem ents) toproduceanoutput signal oftencausenonlinearityerrors. Inclosed-loopdesigns, internal displacem ents arekeptextrem ely sm all byelectrical rebalancingoftheproofm ass, m inim izing nonlinearity.Inaddition, closed-loopdesignsaresaidtohavehigheraccuracythanopen-looptypes.However, definitionoftheterm accuracyvaries. Checkwiththesensorm anufacturer.Servoaccelerom eters cantakeeitheroftwobasicgeom etries: linear(e.g.,loudspeaker)andpendulous(m eterm ovem ent).Pendulousgeom etry ism ost widelyusedincom m ercial designs. Until recently,theservom echanism wasprim arily basedonelectrom agnetic principles. Forceisusuallyprovidedbydrivingcurrentthroughcoilsonthem ass inthepresenceofam agnetic field. Inthependulousservoaccelerom eter withanelectrom agneticrebalancingm echanism , thependulousm ass developsatorqueproportional totheproduct oftheproofm ass andtheappliedacceleration. Motionofthem ass isdetectedbythepositionsensors(typicallycapacitivesensors), whichsendanerrorsignal totheservosystem . Theerrorsignaltriggerstheservoam plifier tooutput afeedbackcurrent tothetorquem otor,whichdevelopsanopposingtorqueequalinm agnitude totheacceleration-generatedtorquefrom thependulousm ass. Output istheapplieddrivecurrent itself(oracrossanoutput resistor), which, analogoustothedeflectionintheopen-looptransducers, isproportional totheappliedforceandthereforetotheacceleration.Incontrast totheruggedspringelem ents oftheopen-looptransducers, therebalancingforceinthecaseoftheclosed-loopaccelerom eter isprim arilyelectrical andexistsonlywhenpowerisprovided. Thespringsareasflim sy inthesensitivedirectionasfeasibleandm ostdam ping isprovidedthroughtheelectronics. UnlikeotherDC-responseaccelerom eters whosebiasstabilitydependssolelyonthecharacteristicsofthesensingelem ent
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 会展项目执行接待方案
- 屋顶光伏建设方案
- 餐饮租赁合同承租人权益保障与风险规避详解
- 车辆借用与城市交通改善服务协议
- 成都房地产租赁代理合作协议书
- 太谷焊工考试题及答案
- 2026版《全品高考》选考复习方案生物838 课时作业(三十五) 神经系统的分级调节及人脑的高级功能 含答案
- 个人财务出纳担保合同范本
- 食品法规面试题及答案
- 商业综合体拆除作业免责协议
- 高考作文-“新八段文”精讲
- 构建高校生涯教育内容体系
- 解读-刑法修正案十一
- 抚养权变更协议模板2024年
- 《赞美技巧》课件
- 老年人炎症性肠病发病机制的研究进展与干细胞治疗
- 水利工程施工监理规范(SL288-2014)用表填表说明及示例
- 医疗责任组长竞聘
- 投标货物包装、运输方案
- 抽水蓄能电站地下厂房系统开挖工程施工方案
- 国家开放大学《建筑力学》形成性作业1-4参考答案
评论
0/150
提交评论