集合间的基本关系.doc_第1页
集合间的基本关系.doc_第2页
集合间的基本关系.doc_第3页
集合间的基本关系.doc_第4页
集合间的基本关系.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

众望高中 高一数学必修一导学案 班级: 姓名: 编写人:肖雄军 1.1.2 集合间的基本关系 导学目标 1. 了解集合之间包含与相等的含义,能识别给定集合的子集;2. 理解子集、真子集的概念;3. 能利用Venn图表达集合间的关系,体会直观图示对理解抽象概念的作用;4. 了解空集的含义. 学习过程 一、课前准备(预习教材P6 P7,找出疑惑之处)复习1:集合的表示方法有 、 、 . 请用适当的方法表示下列集合.(1)10以内3的倍数;(2)1000以内3的倍数.复习2:用适当的符号填空.(1) 0 N; Q; -1.5 R.(2)设集合,则1 A;b B; A.思考:类比实数的大小关系,如57,22,试想集合间是否有类似的“大小”关系呢?二、新课导学 学习探究探究:比较下面几个例子,试发现两个集合之间的关系:与;与;与.新知:子集、相等、真子集、空集的概念. 子集: 在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为Venn图. 用Venn图表示两个集合间的“包含”关系为:B A . 集合相等: 真子集: 空集:试试:用适当的符号填空.(1) , ;(2) , R;(3)N ,Q N;(4) .反思:思考下列问题.(1)符号“”与“”有什么区别?试举例说明.(2)任何一个集合是它本身的子集吗?任何一个集合是它本身的真子集吗?试用符号表示结论.(3)类比下列实数中的结论,你能在集合中得出什么结论? 若; 若. 典型例题例1 写出集合的所有的子集,并指出其中哪些是它的真子集.变式:写出集合的所有真子集组成的集合.例2 判断下列集合间的关系:(1)与;(2)设集合A=0,1,集合,则A与B的关系如何?变式:若集合,且满足,求实数的取值范围. 动手试试练1. 已知集合,B1,2,用适当符号填空: A B,A C,2 C,2 C.练2. 已知集合,且满足,则实数的取值范围为 .三、总结提升 学习小结1. 子集、真子集、空集、相等的概念及符号;Venn图图示;一些结论.2. 两个集合间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,特别要注意区别“属于”与“包含”两种关系及其表示方法. 知识拓展 如果一个集合含有n个元素,那么它的子集有 个,真子集有 个. 学习评价 当堂检测1. 下列结论正确的是( ). A. A B. C. D. 2. 设,且,则实数a的取值范围为( ). A. B. C. D. 3. 若,则( ). A. B. C. D. 4. 满足的集合A有 个.5. 设集合,则它们之间的关系是 ,并用Venn图表示. 课后作业 练习1-3题,题补充练习:1.下列集合中,只有一个子集的集合是( )A. B. C. D. 2.若且, ,则满足上述条件的非空集合A为( )A. B. C. D. 3.设且,则实数的取值范围是_.4已知集合,若集合有且只有2个子集,则由的取值组成的集合为_.5. 某工厂生产的产品在质量和长度上都合格时,该产品才合格. 若用A表示合格产品的集合,B表示质量合格的产品的集合,C表示长度合格的产品的集合则下列包含关系哪些成立?试用Venn图表示这三个集合的关系.6 已知,且,求实数p、q所满足的条件. 1.1.3 集合的基本运算(1) 导学目标 1. 理解交集与并集的概念,掌握交集与并集的区别与联系;2. 会求两个已知集合的交集和并集,并能正确应用它们解决一些简单问题;3. 能使用Venn图表达集合的运算,体会直观图示对理解抽象概念的作用. 学习过程 一、旧知提示复习1:用适当符号填空.0 0; 0 ; x|x10,xR;0 x|x5;x|x3 x|x2;x|x6 x|x5.复习2:已知A=1,2,3, S=1,2,3,4,5,则A S, x|xS且xA= .思考:实数有加法运算,类比实数的加法运算,集合是否也可以“相加”呢?二、新课导学 学习探究(预习教材P8 P9,找出疑惑之处)探究:设集合,.(1)试用Venn图表示集合A、B后,指出它们的公共部分(交)、合并部分(并);(2)讨论如何用文字语言、符号语言分别表示两个集合的交、并?新知:交集、并集.交集: Venn图:并集: Venn图: 试试:(1)A3,5,6,8,B4,5,7,8,则AB ;(2)设A等腰三角形,B直角三角形,则AB ; (3)Ax|x3,Bx|x0,Bx|x3,则A、B、R有何关系?二、新课导学(预习教材P10 P11,找出疑惑之处) 学习探究探究:设U=全班同学、A=全班参加足球队的同学、B=全班没有参加足球队的同学,则U、A、B有何关系?新知:全集、补集. 全集: 补集:补集的Venn图表示:说明:全集是相对于所研究问题而言的一个相对概念,补集的概念必须要有全集的限制.试试:(1)U=2,3,4,A=4,3,B=,则= ,= ;(2)设Ux|x8,且xN,Ax|(x-2)(x-4)(x-5)0,则 ;(3)设集合,则= ;(4)设U三角形,A锐角三角形,则 .反思:(1)在解不等式时,一般把什么作为全集?在研究图形集合时,一般把什么作为全集?(2)Q的补集如何表示?意为什么? 典型例题例1 设Ux|x13,且xN,A8的正约数,B12的正约数,求、.例2 设U=R,Ax|1x2,Bx|1x3,求AB、AB、.变式:分别求、. 动手试试练1. 已知全集I=小于10的正整数,其子集A、B满足,. 求集合A、B.练2. 分别用集合A、B、C表示下图的阴影部分. (1) ; (2) ; (3) ; (4) .反思:结合Venn图分析,如何得到性质:(1) , ;(2) .三、总结提升 学习小结 知识拓展试结合Venn图分析,探索如下等式是否成立?(1);(2). 学习评价 1. 设全集U=R,集合,则=( ) A. 1 B. 1,1 C. D. 2. 已知集合U=,那么集合( ). A. B. C. D. 3. 设全集,集合,,则().A BC D4. 已知U=xN|x10,A=小于11的质数,则= .5. 定义AB=x|xA,且xB,若M=1,2,3,4,5,N=2,4,8,则NM= . 课后作业 1(2010辽宁理,1)已知A,B均为集合U1,3,5,7,9的子集,且AB3,(UB)A9,则A()A1,3B3,7,9 C3,5,9 D3,92设全集U1,2,3,4,5,集合S与T都是U的子集,满足ST2,(US)T4,(US)(UT)1,5则有()A3S,3T B3S,3UT C3US,3T D3US,3UT3设A、B、C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论