第7周(9年级)教学设计.doc_第1页
第7周(9年级)教学设计.doc_第2页
第7周(9年级)教学设计.doc_第3页
第7周(9年级)教学设计.doc_第4页
第7周(9年级)教学设计.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

- - 8 - -海韵教育 数学(9812267802011年中考数学几何阅读题汇编及解析1.(1)探究新知:如图1,已知ABC与ABD的面积相等,试判断AB与CD的位置关系,并说明理由.(2)结论应用:如图2,点M、N在反比例函数y=的图象上,过点M作MEy轴,过点N作NFx轴,垂足分别为E,F.试应用(1)中得到的结论证明:MNEF.若中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与E是否平行.图2 图32.在一平直河岸同侧有两个村庄,到的距离分别是3km和2km,现计划在河岸上建一抽水站,用输水管向两个村庄供水方案设计:某班数学兴趣小组设计了两种铺设管道方案:图1是方案一的示意图,设该方案中管道长度为,且(其中于点);图2是方案二的示意图,设该方案中管道长度为,且(其中点与点关于对称,与交于点)ABPllABPC图1图2lABPC图3K观察计算(1)在方案一中, km(用含的式子表示);(2)在方案二中,组长小宇为了计算的长,作了如图3所示的辅助线,请你按小宇同学的思路计算, km(用含的式子表示)探索归纳(1)当时,比较大小:(填“”、“”或“”);当时,比较大小:(填“”、“”或“”);(2)请你参考下边方框中的方法指导,就(当时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案一还是方案二?方法指导当不易直接比较两个正数与的大小时,可以对它们的平方进行比较:,与的符号相同当时,即;当时,即;当时,即;3.ABC是一块等边三角形的废铁片,利用其剪裁一个正方形DEFG,使正方形的一条边DE落在BC上,顶点F、G分别落在AC、AB上.ABCDEFG图 (1).证明:BDGCEF;. 探究:怎样在铁片上准确地画出正方形.小聪和小明各给出了一种想法,(a). 小聪想:要画出正方形DEFG,只要能计算出正方形的边长就能求出BD和CE的长,从而确定D点和E点,再画正方形DEFG就容易了. ABCDEFG图 (3)GFED设ABC的边长为2 ,请你帮小聪求出正方形的边长(结果用含根号的式子表示,不要求分母有理化) .ABCDEFG图 (2)(b). 小明想:不求正方形的边长也能画出正方形. 具体作法是: 在AB边上任取一点G,如图作正方形GDEF;连结BF并延长交AC于F;作FEFE交BC于E,FGFG交AB于G,GDGD交BC于D,则四边形DEFG即为所求.你认为小明的作法正确吗?说明理由.4.请阅读下列材料:问题:如图1,在菱形和菱形中,点在同一条直线上,是线段的中点,连结若,探究与的位置关系及的值小聪同学的思路是:延长交于点,构造全等三角形,经过推理使问题得到解决请你参考小聪同学的思路,探究并解决下列问题:(1)写出上面问题中线段与的位置关系及的值;(2)将图1中的菱形绕点顺时针旋转,使菱形的对角线恰好与菱形的边在同一条直线上,原问题中的其他条件不变(如图2)你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明(3)若图1中,将菱形绕点顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出的值(用含的式子表示)DABEFCPG图1DCGPABEF图25、阅读下列内容后,解答下列各题:几个不等于0的数相乘,积的符号由负因数的个数决定例如:考查代数式的值与0的大小当时,当时,当时,综上:当时,当或时,(1) 填写下表:(用“”或“”填入空格处)(2)由上表可知,当满足 时,;(3)运用你发现的规律,直接写出当满足 时,6、阅读下列材料,按要求解答问题:如图91,在ABC中,A2B,且A60小明通过以下计算:由题意,B30,C90,c2b,ab,得a2b2(b)2b22b2bc即a2b2 bc于是,小明猜测:对于任意的ABC,当A2B时,关系式a2b2bc都成立(1)如图92,请你用以上小明的方法,对等腰直角三角形进行验证,判断小明的猜测是否正确,并写出验证过程;(2)如图93,你认为小明的猜想是否正确,若认为正确,请你证明;否则,请说明理由;图9-1图9-2图9-3(3)若一个三角形的三边长恰为三个连续偶数,且A2B,请直接写出这个三角形三边的长,不必说明理由7、阅读理解:若为整数,且三次方程有整数解c,则将c代入方程得:,移项得:,即有:,由于都是整数,所以c是m的因数上述过程说明:整数系数方程的整数解只可能是m的因数 例如:方程中2的因数为1和2,将它们分别代入方程进行验证得:x=2是该方程的整数解,1、1、2不是方程的整数解解决问题:(1)根据上面的学习,请你确定方程的整数解只可能是哪几个整数?(2)方程是否有整数解?若有,请求出其整数解;若没有,请说明理由.如图98、如图9,在函数的图像上,都是等腰直角三角形,斜边、,都在轴上求的坐标求的值 9、阅读理解:对于任意正实数,只有点时,等号成立结论:在(均为正实数)中,若为定值,则,只有当时,有最小值根据上述内容,回答下列问题:若,只有当 时,有最小值 思考验证:如图1,为半圆的直径,为半圆上任意一点,(与点不重合)过点作,垂足为,试根据图形验证,并指出等号成立时的条件

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论